login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171532
Coefficients of partition Hermite-Eulerian polynomials: p(x,n)= If[n == 0, 1, HermiteH[n, x]*Sum[Eulerian[n-1, k-1]*x^(k - 1), {k, 1, n}]/2^Floor[n/2]]
0
1, 0, 2, -1, -1, 2, 2, 0, -6, -24, -2, 16, 4, 3, 33, 21, -129, -128, 32, 44, 4, 0, 30, 780, 1940, -260, -2602, -832, 488, 208, 8, -15, -855, -4440, 600, 26265, 23745, -12982, -17574, -1004, 2356, 456, 8, 0, -210, -25200, -249690, -456960, 249942, 969360
OFFSET
0,3
COMMENTS
Row sums are:
{1, 2, 2, -12, -120, -240, 16560, 292320, -4152960, -243129600, 932601600,...}
These polynomials are suggested by Gaussian limit of the Eulerian numbers in Analytic Combinatorics.
A quantum polynomial like:
p(x,n,m)= If[n == 0, 1, HermiteH[m, x]*Sum[Binomial[n-1, k-1]*x^(k - 1), {k, 1, n}]/2^Floor[n/2]]
might be a wave function for a system of Hamiltonian equations.
I set the Mathematica up so the Eulerian numbers were included in the general form.
LINKS
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, pgae 695.
FORMULA
p(x,n)= If[n == 0, 1, HermiteH[n, x]*Sum[Eulerian[n-1, k-1]*x^(k - 1), {k, 1, n}]/2^Floor[n/2]]
EXAMPLE
{1},
{0, 2},
{-1, -1, 2, 2},
{0, -6, -24, -2, 16, 4},
{3, 33, 21, -129, -128, 32, 44, 4},
{0, 30, 780, 1940, -260, -2602, -832, 488, 208, 8},
{-15, -855, -4440, 600, 26265, 23745, -12982, -17574, -1004, 2356, 456, 8},
{0, -210, -25200, -249690, -456960, 249942, 969360, 299938, -353568, -180612, 18496, 18888, 1920, 16},
{105, 25935, 449925, 1432515, -1965285, -12461715, -9488129, 9458617, 11950864, 110576, -3222488, -710888, 194576, 68464, 3952, 16},
{0, 1890, 948780, 27604080, 164232180, 221577804, -276419052, -715414464, -177220116, 390281954, 213482816, -45328432, -46481248, -3413104, 2534336, 466880, 16064, 32},
{-945, -957285, -45199350, -420583590, -786209130, 3050516070, 11349909900, 6607322820, -11968740405, -13764935025, 843893042, 5673703786, 1339479880, -687787736, -280701392, 7491568, 13836784, 1530160, 32416, 32}
MATHEMATICA
Clear[A, p, n, k]
m = 1;
A[n_, 1] := 1 A[n_, n_] := 1
A[n_, k_] := (m*n - m*k + 1)A[n - 1, k - 1] + (m*k - (m - 1))A[n - 1, k]
a = Table[A[n, k], {n, 10}, {k, n}]
p[x_, n_] := If[n == 0, 1, HermiteH[ n, x]*Sum[a[[n, k]]*x^(k - 1), {k, 1, n}]/2^Floor[n/2]]
b = Table[CoefficientList[p[x, n], x], {n, 0, 10}]
Flatten[b]
CROSSREFS
KEYWORD
sign,uned
AUTHOR
Roger L. Bagula, Dec 11 2009
STATUS
approved