login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240871 Number of partitions p of n into distinct parts such that max(p) = 3 + min(p). 3
0, 0, 0, 0, 0, 1, 0, 2, 1, 1, 2, 2, 0, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 0, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 0, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 0, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 0, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 0, 2, 2, 1, 1, 2, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,8
LINKS
EXAMPLE
a(7) counts these 2 partitions: 52, 421.
MATHEMATICA
z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; Table[Count[f[n], p_ /; Max[p] == 2 + Min[p]], {n, 0, z}] (* A171182 *)
Table[Count[f[n], p_ /; Max[p] == 3 + Min[p]], {n, 0, z}] (* A240871 *)
Table[Count[f[n], p_ /; Max[p] == 4 + Min[p]], {n, 0, z}] (* A240872 *)
Table[Count[f[n], p_ /; Max[p] == 5 + Min[p]], {n, 0, z}] (* A240873 *)
CROSSREFS
Sequence in context: A357458 A349277 A307014 * A236765 A171531 A171532
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 15 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 24 15:22 EDT 2024. Contains 374584 sequences. (Running on oeis4.)