The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240871 Number of partitions p of n into distinct parts such that max(p) = 3 + min(p). 3

%I #5 Apr 22 2014 22:16:29

%S 0,0,0,0,0,1,0,2,1,1,2,2,0,2,2,1,1,2,1,2,1,1,2,2,0,2,2,1,1,2,1,2,1,1,

%T 2,2,0,2,2,1,1,2,1,2,1,1,2,2,0,2,2,1,1,2,1,2,1,1,2,2,0,2,2,1,1,2,1,2,

%U 1,1,2,2,0,2,2,1,1,2,1,2,1

%N Number of partitions p of n into distinct parts such that max(p) = 3 + min(p).

%e a(7) counts these 2 partitions: 52, 421.

%t z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; Table[Count[f[n], p_ /; Max[p] == 2 + Min[p]], {n, 0, z}] (* A171182 *)

%t Table[Count[f[n], p_ /; Max[p] == 3 + Min[p]], {n, 0, z}] (* A240871 *)

%t Table[Count[f[n], p_ /; Max[p] == 4 + Min[p]], {n, 0, z}] (* A240872 *)

%t Table[Count[f[n], p_ /; Max[p] == 5 + Min[p]], {n, 0, z}] (* A240873 *)

%Y Cf. A171182, A240872, A240873.

%K nonn,easy

%O 0,8

%A _Clark Kimberling_, Apr 15 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 16:24 EDT 2024. Contains 375058 sequences. (Running on oeis4.)