login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233793
Least odd prime p such that 2*n - p = sigma(k) for some k > 0, or 0 if such an odd prime p does not exist, where sigma(k) is the sum of all (positive) divisors of k.
4
0, 3, 3, 5, 3, 5, 7, 3, 3, 5, 7, 11, 11, 13, 17, 17, 3, 5, 7, 37, 3, 5, 7, 17, 11, 13, 23, 17, 19, 3, 5, 7, 3, 5, 7, 41, 11, 13, 47, 17, 19, 53, 23, 31, 59, 29, 3, 3, 5, 7, 11, 11, 13, 17, 17, 19, 23, 23, 61, 29, 29, 3, 5, 7, 3, 5, 7, 3, 5, 7, 79, 11, 13, 109, 17, 19, 61, 23, 31, 67, 29, 31, 73, 41, 37, 79, 3, 5, 7, 47, 11, 13, 3, 5, 7, 59, 11, 13, 3, 5
OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n > 1. Moreover, if n > 180 is not among 284, 293, 371, 542, 788, 1274, then 2*n can be written as p + sigma(m^2), where p is an odd prime and m is a positive integer.
See also part (i) of the conjecture in A233654.
Note that if sigma(k) is odd, then the order of k at each odd prime must be even, and hence k has the form m^2 or 2*m^2, where m is a positive integer.
We have verified part (i) of the conjecture for n up to 10^9.
EXAMPLE
a(2) = 3 since 2*2 = 3 + sigma(1), but 2*2 = 2 + sigma(k) for no k > 0.
MATHEMATICA
sigma[n_]:=Sum[If[Mod[n, d]==0, d, 0], {d, 1, n}]
S[n_]:=Union[Table[sigma[j^2], {j, 1, Sqrt[n]}], Table[sigma[2*j^2], {j, 1, Sqrt[n/2]}]]
Do[Do[If[MemberQ[S[2n], 2n-Prime[k]], Print[n, " ", Prime[k]]; Goto[aa]], {k, 2, PrimePi[2n]}];
Print[n, " ", 0]; Label[aa]; Continue, {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 15 2013
STATUS
approved