|
|
A147663
|
|
Expansion of 1/(1 - x - x^2 + x^3 - x^7 + x^9 - x^11).
|
|
23
|
|
|
1, 1, 2, 2, 3, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 50, 66, 88, 116, 154, 203, 269, 356, 472, 625, 828, 1097, 1453, 1925, 2550, 3379, 4476, 5930, 7855, 10406, 13784, 18260, 24189, 32044, 42449, 56233, 74493, 98682, 130726, 173175, 229409, 303902, 402585
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
Curtis T. McMullen, Dynamics on K3 surfaces: Salem numbers and Siegel disks, 2005.
Index entries for linear recurrences with constant coefficients, signature (1,1,-1,0,0,0,1,0,-1,0,1).
|
|
FORMULA
|
G.f.: -1/((x^3 + x^2 - 1)*(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)). - Colin Barker, Sep 18 2013
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-7) - a(n-9) + a(n-10), n >= 10. - Franck Maminirina Ramaharo, Oct 31 2018
|
|
MATHEMATICA
|
CoefficientList[Series[1/(1 - x - x^2 + x^3 - x^7 + x^9 - x^11), {x, 0, 50}], x] (* Franck Maminirina Ramaharo, Oct 31 2018 *)
LinearRecurrence[{1, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1}, {1, 1, 2, 2, 3, 3, 4, 5, 7, 9, 12}, 50] (* Harvey P. Dale, May 31 2020 *)
|
|
PROG
|
(PARI) Vec(-1/((x^3+x^2-1)*(x^8-x^7+x^5-x^4+x^3-x+1)) + O(x^50)) \\ Colin Barker, Sep 18 2013
(MAGMA) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 -x-x^2+x^3-x^7+x^9-x^11))); // G. C. Greubel, Nov 03 2018
|
|
CROSSREFS
|
Cf. A029826, A117791, A143419, A143438, A143472, A143619, A143644, A173908, A173911, A173924, A173925, A174522, A175740, A175772, A175773, A175782, A181600, A204631, A225391, A225393, A225394, A225482, A225499.
Sequence in context: A018243 A127207 A173513 * A301765 A036811 A330265
Adjacent sequences: A147660 A147661 A147662 * A147664 A147665 A147666
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Roger L. Bagula, Nov 09 2008
|
|
EXTENSIONS
|
Heavily edited (because the Name, Comments, Formula and Mathematica code did not correspond to the terms of the sequence) by Colin Barker, Sep 18 2013
|
|
STATUS
|
approved
|
|
|
|