login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143419
G.f.: 1/p(x), where p(x) = degree 22 Salem polynomial p(x) = x^22 + x^21 - x^19 - 2*x^18 - 3*x^17 - 3*x^16 - 2*x^15 + 2*x^13 + 4*x^12 + 5*x^11 + 4*x^10 + 2*x^9 - 2*x^7 - 3*x^6 - 3*x^5 - 2*x^4 - x^3 + x + 1.
25
1, -1, 1, 0, 1, 1, 1, 2, 2, 4, 4, 7, 9, 12, 17, 23, 32, 44, 60, 83, 113, 156, 214, 294, 403, 554, 760, 1044, 1433, 1967, 2701, 3708, 5091, 6988, 9596, 13172, 18085, 24828, 34086, 46797, 64246, 88203, 121092, 166246, 228237, 313343, 430185, 590594, 810819
OFFSET
0,8
LINKS
Index entries for linear recurrences with constant coefficients, signature (-1,0,1,2,3,3,2,0,-2,-4,-5,-4,-2,0,2,3,3,2,1,0,-1,-1).
FORMULA
a(n) = -a(n-1) + a(n-3) + 2*a(n-4) + 3*a(n-5) + 3*a(n-6) + 2*a(n-7) - 2*a(n-9) - 4*a(n-10) - 5*a(n-11) - 4*a(n-12) - 2*a(n-13) + 2*a(n-15) + 3*a(n-16) + 3*a(n-17) + 2*a(n-18) + a(n-19) - a(n-21) - a(n-22). - Franck Maminirina Ramaharo, Oct 30 2018
MATHEMATICA
f[x_] = x^22 + x^21 - x^19 - 2*x^18 - 3*x^17 - 3*x^16 - 2*x^15 + 2*x^13 + 4*x^12 + 5*x^11 + 4*x^10 + 2*x^9 - 2*x^7 - 3*x^6 - 3*x^5 - 2*x^4 - x^3 + x + 1;
CoefficientList[Series[1/f[x], {x, 0, 50}], x]
LinearRecurrence[{-1, 0, 1, 2, 3, 3, 2, 0, -2, -4, -5, -4, -2, 0, 2, 3, 3, 2, 1, 0, -1, -1}, {1, -1, 1, 0, 1, 1, 1, 2, 2, 4, 4, 7, 9, 12, 17, 23, 32, 44, 60, 83, 113, 156}, 50] (* Harvey P. Dale, Aug 18 2024 *)
PROG
(PARI) p(x)=x^22 + x^21 - x^19 - 2*x^18 - 3*x^17 - 3*x^16 - 2*x^15 + 2*x^13 + 4*x^12 + 5*x^11 + 4*x^10 + 2*x^9 - 2*x^7 - 3*x^6 - 3*x^5 - 2*x^4 - x^3 + x + 1; Vec(1/p(x)+O(x^60)) \\ Charles R Greathouse IV, Feb 13 2011
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(x^22 +x^21-x^19-2*x^18-3*x^17-3*x^16-2*x^15+2*x^13+4*x^12+5*x^11 + 4*x^10+2*x^9-2*x^7-3*x^6-3*x^5-2*x^4-x^3+x+1))); // G. C. Greubel, Nov 03 2018
KEYWORD
easy,sign
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Dec 12 2008
More terms from Sean A. Irvine, Feb 13 2011
Offset corrected, and more terms from Franck Maminirina Ramaharo, Nov 02 2018
STATUS
approved