login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173908
Expansion of 1/(1 + x - x^3 - x^4 - x^8 - x^12 - x^13 - x^17 - x^21 - x^22 - x^26 - x^30 - x^31 + x^33 + x^34).
23
1, -1, 1, 0, 0, 0, 1, -1, 2, -2, 3, -2, 3, -2, 4, -3, 6, -5, 9, -7, 12, -9, 16, -12, 22, -17, 31, -24, 43, -33, 59, -45, 81, -63, 113, -88, 156, -121, 215, -168, 298, -233, 412, -323, 570, -448, 788, -621, 1090, -861, 1507, -1193, 2084, -1654, 2882, -2293
OFFSET
0,9
COMMENTS
This polynomial is what I call a bi-Salem polynomial because it has two roots bigger than 1 (one positive and one negative).
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,1,1,0,0,0,1,0,0,0,1,1,0,0,0,1,0,0,0,1,1,0,0,0,1,0,0,0,1,1,0,-1,-1).
FORMULA
a(n) = a(n-1) + (n-3) + a(n-4) + a(n-8) + a(n-12) + a(n-13) + a(n-17) + a(n-21) + a(n-22) + a(n-26) + a(n-30) + a(n-31) - a(n-33) - a(n-34). - Franck Maminirina Ramaharo, Nov 02 2018
MAPLE
seq(coeff(series(1/(1+x-x^3-x^4-x^8-x^12-x^13-x^17-x^21-x^22-x^26-x^30-x^31+ x^33+x^34), x, n+1), x, n), n = 0..60); # G. C. Greubel, Dec 15 2019
MATHEMATICA
CoefficientList[Series[1/(1+x-x^3-x^4-x^8-x^12-x^13-x^17-x^21-x^22-x^26-x^30 - x^31+x^33+x^34), {x, 0, 60}], x]
PROG
(PARI) x='x+O('x^60); Vec(1/(1+x-x^3-x^4-x^8-x^12-x^13-x^17-x^21-x^22-x^26 - x^30-x^31+x^33+x^34)) \\ G. C. Greubel, Nov 03 2018
(Magma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1+x-x^3 -x^4-x^8-x^12-x^13-x^17-x^21-x^22-x^26-x^30-x^31+x^33+x^34))); // G. C. Greubel, Nov 03 2018
(Sage)
def A173908_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1+x-x^3-x^4-x^8-x^12-x^13-x^17-x^21-x^22-x^26-x^30 - x^31+x^33+x^34) ).list()
A173908_list(30) # G. C. Greubel, Dec 15 2019
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Nov 26 2010
STATUS
approved