login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A174522 Expansion of 1/(1 - x - x^4 + x^6). 23
1, 1, 1, 1, 2, 3, 3, 3, 4, 6, 7, 7, 8, 11, 14, 15, 16, 20, 26, 30, 32, 37, 47, 57, 63, 70, 85, 105, 121, 134, 156, 191, 227, 256, 291, 348, 419, 484, 548, 640, 768, 904, 1033, 1189, 1409, 1673, 1938, 2223, 2599, 3083, 3612, 4162, 4823, 5683, 6696, 7775, 8986 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Low limiting ratio in 100th iteration near 1.16663.

The polynomial is interesting for the puzzling low ratio and the Salem like root structure with two complex roots outside the unit circle.

LINKS

Table of n, a(n) for n=0..56.

Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,0,-1).

FORMULA

a(n) = a(n-1) + a(n-4) + a(n-6). - Franck Maminirina Ramaharo, Oct 31 2018

MATHEMATICA

CoefficientList[Series[1/(1 - x - x^4 + x^6), {x, 0, 60}], x]

PROG

(PARI) x='x+O('x^50); Vec(1/(1 - x - x^4 + x^6)) \\ G. C. Greubel, Nov 03 2018

(MAGMA) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 - x - x^4 + x^6))); // G. C. Greubel, Nov 03 2018

CROSSREFS

Cf. A029826, A117791, A143419, A143438, A143472, A143619, A143644, A147663, A173908, A173911, A173924, A173925, A175740, A175772, A175773, A175782, A181600, A204631, A225391, A225393, A225394, A225482, A225499.

Sequence in context: A048460 A036017 A029066 * A035581 A171628 A205566

Adjacent sequences:  A174519 A174520 A174521 * A174523 A174524 A174525

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula, Nov 28 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 07:14 EDT 2019. Contains 324145 sequences. (Running on oeis4.)