login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/(1 - x - x^4 + x^6).
23

%I #23 Sep 08 2022 08:45:51

%S 1,1,1,1,2,3,3,3,4,6,7,7,8,11,14,15,16,20,26,30,32,37,47,57,63,70,85,

%T 105,121,134,156,191,227,256,291,348,419,484,548,640,768,904,1033,

%U 1189,1409,1673,1938,2223,2599,3083,3612,4162,4823,5683,6696,7775,8986

%N Expansion of 1/(1 - x - x^4 + x^6).

%C Low limiting ratio in 100th iteration near 1.16663.

%C The polynomial is interesting for the puzzling low ratio and the Salem like root structure with two complex roots outside the unit circle.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,0,-1).

%F a(n) = a(n-1) + a(n-4) + a(n-6). - _Franck Maminirina Ramaharo_, Oct 31 2018

%t CoefficientList[Series[1/(1 - x - x^4 + x^6), {x, 0, 60}], x]

%o (PARI) x='x+O('x^50); Vec(1/(1 - x - x^4 + x^6)) \\ _G. C. Greubel_, Nov 03 2018

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 - x - x^4 + x^6))); // _G. C. Greubel_, Nov 03 2018

%Y Cf. A029826, A117791, A143419, A143438, A143472, A143619, A143644, A147663, A173908, A173911, A173924, A173925, A175740, A175772, A175773, A175782, A181600, A204631, A225391, A225393, A225394, A225482, A225499.

%K nonn,easy

%O 0,5

%A _Roger L. Bagula_, Nov 28 2010