

A029066


Expansion of 1/((1x)*(1x^4)*(1x^5)*(1x^9)).


0



1, 1, 1, 1, 2, 3, 3, 3, 4, 6, 7, 7, 8, 10, 12, 13, 14, 16, 19, 21, 23, 25, 28, 31, 34, 37, 40, 44, 48, 52, 56, 60, 65, 70, 75, 80, 86, 92, 98, 104, 111, 118, 125, 132, 140, 149, 157, 165, 174, 184, 194, 203, 213, 224, 236
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


COMMENTS

Number of partitions of n into parts 1, 4, 5 and 9.  Ilya Gutkovskiy, May 17 2017


LINKS

Table of n, a(n) for n=0..54.
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,0,1,0,0,0,0,0,0,1,0,1, 0,0,1,1).


MATHEMATICA

CoefficientList[Series[1/((1  x)*(1  x^4)*(1  x^5)*(1  x^9)), {x, 0, 50}], x] (* G. C. Greubel, May 17 2017 *)
LinearRecurrence[{1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1}, {1, 1, 1, 1, 2, 3, 3, 3, 4, 6, 7, 7, 8, 10, 12, 13, 14, 16, 19}, 60] (* Harvey P. Dale, Apr 21 2019 *)


PROG

(PARI) x='x+O('x^50); Vec(1/((1  x)*(1  x^4)*(1  x^5)*(1  x^9))) \\ G. C. Greubel, May 17 2017


CROSSREFS

Sequence in context: A029067 A048460 A036017 * A174522 A327719 A327716
Adjacent sequences: A029063 A029064 A029065 * A029067 A029068 A029069


KEYWORD

nonn


AUTHOR

N. J. A. Sloane


STATUS

approved



