login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029067
Expansion of 1/((1-x)*(1-x^4)*(1-x^5)*(1-x^10)).
0
1, 1, 1, 1, 2, 3, 3, 3, 4, 5, 7, 7, 8, 9, 11, 13, 14, 15, 17, 19, 23, 24, 26, 28, 32, 36, 38, 40, 44, 48, 54, 56, 60, 64, 70, 76, 80, 84, 90, 96, 105, 109, 115, 121, 130, 139, 145, 151, 160, 169, 181, 187, 196, 205, 217, 229, 238, 247, 259, 271, 287, 296, 308
OFFSET
0,5
COMMENTS
Number of partitions of n into parts 1, 4, 5 and 10. - Ilya Gutkovskiy, May 17 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,0,-1,0,0,-1,2,-1,0,0, -1,0,1,0,0,1,-1).
MATHEMATICA
CoefficientList[Series[1/((1 - x)*(1 - x^4)*(1 - x^5)*(1 - x^10)), {x, 0, 50}], x] (* G. C. Greubel, May 17 2017 *)
LinearRecurrence[{1, 0, 0, 1, 0, -1, 0, 0, -1, 2, -1, 0, 0, -1, 0, 1, 0, 0, 1, -1}, {1, 1, 1, 1, 2, 3, 3, 3, 4, 5, 7, 7, 8, 9, 11, 13, 14, 15, 17, 19}, 70] (* Harvey P. Dale, Jan 17 2019 *)
PROG
(PARI) a(n)=round((n+10)*(2*n^2+40*n+129+15*(-1)^n)/2400+(n\5+1)*[2, 0, -1, -1, 0][n%5+1]/10+(n%2)*(-1)^(n\2)/8) \\ Tani Akinari, May 22 2014
(PARI) x='x+O('x^50); Vec(1/((1 - x)*(1 - x^4)*(1 - x^5)*(1 - x^10))) \\ G. C. Greubel, May 17 2017
CROSSREFS
Sequence in context: A177497 A029068 A108932 * A048460 A351058 A036017
KEYWORD
nonn
STATUS
approved