login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029064
Expansion of 1/((1-x)*(1-x^4)*(1-x^5)*(1-x^7)).
1
1, 1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8, 10, 11, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 40, 44, 48, 52, 57, 62, 67, 72, 78, 84, 90, 97, 104, 111, 118, 126, 135, 143, 152, 161, 171, 181, 191, 202, 213, 225, 237, 249, 262
OFFSET
0,5
COMMENTS
Number of partitions of n into parts 1, 4, 5 and 7. - Ilya Gutkovskiy, May 17 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,0,-1,1,-1,-1,1,-1,0,1,0, 0,1,-1).
FORMULA
a(n) = floor((2*n^3+51*n^2+388*n+1680)/1680). - Tani Akinari, May 23 2014
a(-17 - n) = -a(n). - Michael Somos, May 23 2014
EXAMPLE
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 6*x^9 + ...
MATHEMATICA
a[ n_] := Quotient[ 2 n^3 + 51 n^2 + 388 n, 1680] + 1; (* Michael Somos, May 23 2014 *)
CoefficientList[Series[1/((1 - x)*(1 - x^4)*(1 - x^5)*(1 - x^7)), {x, 0, 50}], x] (* G. C. Greubel, May 17 2017 *)
PROG
(PARI) {a(n) = (2*n^3 + 51*n^2 + 388*n) \ 1680 + 1}; /* Michael Somos, May 23 2014 */
(PARI) x='x+O('x^50); Vec(1/((1 - x)*(1 - x^4)*(1 - x^5)*(1 - x^7))) \\ G. C. Greubel, May 17 2017
CROSSREFS
Sequence in context: A017886 A029038 A011877 * A029037 A017875 A039732
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 11 1999
STATUS
approved