login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175772
Expansion of 1/(1 - x - x^9 - x^17 + x^18).
23
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 16, 20, 25, 31, 38, 46, 55, 67, 81, 98, 119, 145, 177, 216, 263, 320, 389, 473, 575, 699, 850, 1034, 1258, 1530, 1862, 2265, 2755, 3351, 4076, 4958, 6031, 7336, 8923, 10854, 13203, 16060, 19535, 23762
OFFSET
0,10
COMMENTS
The ratio a(n+1)/a(n) is 1.216391661138265... as n->infinity.
LINKS
Michael Mossinghoff, Small Salem Numbers
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,-1).
FORMULA
G.f.: 1/((1 - x^2 + x^4)*(1 - x^4 - x^5 - x^6 + x^10)*(1 - x + x^2 - x^3 + x^4)).
a(n) = a(n-1) + a(n-9) + a(n-17) - a(n-18). - Harvey P. Dale, Jul 13 2014
MATHEMATICA
CoefficientList[Series[1/(1 - x - x^9 - x^17 + x^18), {x, 0, 50}], x] (* or *)
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11} , 60] (* Harvey P. Dale, Jul 13 2014 *)
PROG
(PARI) x='x+O('x^50); Vec(1/(1-x-x^9-x^17+x^18)) \\ G. C. Greubel, Nov 03 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x-x^9-x^17+x^18))); // G. C. Greubel, Nov 03 2018
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Dec 04 2010
STATUS
approved