login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/(1 - x - x^9 - x^17 + x^18).
23

%I #21 Sep 08 2022 08:45:51

%S 1,1,1,1,1,1,1,1,1,2,3,4,5,6,7,8,9,11,13,16,20,25,31,38,46,55,67,81,

%T 98,119,145,177,216,263,320,389,473,575,699,850,1034,1258,1530,1862,

%U 2265,2755,3351,4076,4958,6031,7336,8923,10854,13203,16060,19535,23762

%N Expansion of 1/(1 - x - x^9 - x^17 + x^18).

%C The ratio a(n+1)/a(n) is 1.216391661138265... as n->infinity.

%H G. C. Greubel, <a href="/A175772/b175772.txt">Table of n, a(n) for n = 0..1000</a>

%H Michael Mossinghoff, <a href="http://www.cecm.sfu.ca/~mjm/Lehmer/lists/SalemList.html">Small Salem Numbers</a>

%H <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,-1).

%F G.f.: 1/((1 - x^2 + x^4)*(1 - x^4 - x^5 - x^6 + x^10)*(1 - x + x^2 - x^3 + x^4)).

%F a(n) = a(n-1) + a(n-9) + a(n-17) - a(n-18). - _Harvey P. Dale_, Jul 13 2014

%t CoefficientList[Series[1/(1 - x - x^9 - x^17 + x^18), {x, 0, 50}], x] (* or *)

%t LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11} ,60] (* _Harvey P. Dale_, Jul 13 2014 *)

%o (PARI) x='x+O('x^50); Vec(1/(1-x-x^9-x^17+x^18)) \\ _G. C. Greubel_, Nov 03 2018

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x-x^9-x^17+x^18))); // _G. C. Greubel_, Nov 03 2018

%Y Cf. A175739.

%Y Cf. A029826, A117791, A143419, A143438, A143472, A143619, A143644, A147663, A173908, A173911, A173924, A173925, A174522, A175740, A175773, A175782, A181600, A204631, A225391, A225393, A225394, A225482, A225499.

%K nonn,easy

%O 0,10

%A _Roger L. Bagula_, Dec 04 2010