login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143472
Expansion of 1/(1 - x^3 - x^5 - x^7 + x^10), inverse of a Salem polynomial.
23
1, 0, 0, 1, 0, 1, 1, 1, 2, 1, 2, 3, 3, 4, 5, 6, 7, 9, 11, 14, 17, 20, 26, 31, 38, 48, 58, 72, 88, 108, 134, 164, 202, 249, 306, 376, 463, 570, 701, 863, 1061, 1306, 1607, 1976, 2433, 2993, 3682, 4531, 5574, 6859, 8439, 10383, 12776, 15719, 19340, 23796
OFFSET
0,9
COMMENTS
The ratio productive positive root is 1.2303914344072246.
FORMULA
G.f.: 1/(1 - x^3 - x^5 - x^7 + x^10). - Colin Barker, Oct 23 2013
a(n) = a(n-3) + a(n-5) + a(n-7) - a(n-10). - Franck Maminirina Ramaharo, Oct 30 2018
MATHEMATICA
CoefficientList[Series[1/(1 - x^3 - x^5 - x^7 + x^10), {x, 0, 50}], x]
PROG
(Maxima) makelist(ratcoef(taylor(1/(1 - x^3 - x^5 - x^7 + x^10), x, 0, n), x, n), n, 0, 50); /* Franck Maminirina Ramaharo, Nov 02 2018 */
(PARI) x='x+O('x^50); Vec(1/(1-x^3-x^5-x^7+x^10)) \\ G. C. Greubel, Nov 03 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^3-x^5-x^7+x^10))); // G. C. Greubel, Nov 03 2018
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Colin Barker, Oct 23 2013
New name after Colin Barker's formula by Franck Maminirina Ramaharo, Nov 03 2018
STATUS
approved