OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,-10,1,-45,8,-120,27,-210,48,-253,48,-210,27,-120,8,-45,1,-10,0,-1).
FORMULA
G.f.: 1/(1 + 10*x^2 - x^3 + 45*x^4 - 8*x^5 + 120*x^6 - 27*x^7 + 210*x^8 - 48*x^9 + 253*x^10 - 48*x^11 + 210*x^12 - 27*x^13 + 120*x^14 - 8*x^15 + 45*x^16 - x^17 + 10*x^18 + x^20).
a(n) = -10*a(n-2) + a(n-3) - 45*a(n-4) + 8*a(n-5) - 120*a(n-6) + 27*a(n-7) - 210*a(n-8) + 48*a(n-9) - 253*a(n-10) + 48*a(n-11) - 210*a(n-12) + 27*a(n-13) - 120*a(n-14) + 8*a(n-15) - 45*a(n-16) + a(n-17) - 10*a(n-18) - a(n-20). - Franck Maminirina Ramaharo, Oct 30 2018
MATHEMATICA
f[x_] = x^10 - x^7 - x^5 - x^3 + 1;
CoefficientList[Series[1/(x^10*f[x + 1/x]), {x, 0, 40}], x]
LinearRecurrence[{0, -10, 1, -45, 8, -120, 27, -210, 48, -253, 48, -210, 27, -120, 8, -45, 1, -10, 0, -1}, {1, 0, -10, 1, 55, -12, -219, 77, 701, -351, -1900, 1277, 4494, -3966, -9485, 11058, 18342, -29012, -34057, 75053}, 40] (* Harvey P. Dale, Dec 20 2023 *)
PROG
(PARI) x='x+O('x^50); Vec(1/(1+10*x^2-x^3+45*x^4-8*x^5+120*x^6-27*x^7 + 210*x^8-48*x^9+253*x^10-48*x^11+210*x^12-27*x^13+120*x^14 - 8*x^15 + 45*x^16-x^17+10*x^18+x^20)) \\ G. C. Greubel, Nov 03 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 + 10*x^2-x^3+45*x^4-8*x^5+120*x^6-27*x^7+210*x^8-48*x^9+253*x^10 - 48*x^11+210*x^12-27*x^13+120*x^14-8*x^15+45*x^16-x^17+10*x^18+x^20))); // G. C. Greubel, Nov 03 2018
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Roger L. Bagula and Gary W. Adamson, Oct 24 2008
EXTENSIONS
Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 30 2018
STATUS
approved