login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143471
Expansion of 1/(x^10*p(x + 1/x)), where p(x) = 1 - x^3 - x^5 - x^7 + x^10 is a Salem polynomial.
3
1, 0, -10, 1, 55, -12, -219, 77, 701, -351, -1900, 1277, 4494, -3966, -9485, 11058, 18342, -29012, -34057, 75053, 65836, -198845, -144194, 547462, 359314, -1548522, -937883, 4396415, 2346732, -12282817, -5272447, 33415657, 9836296, -88340069, -11914604
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,-10,1,-45,8,-120,27,-210,48,-253,48,-210,27,-120,8,-45,1,-10,0,-1).
FORMULA
G.f.: 1/(1 + 10*x^2 - x^3 + 45*x^4 - 8*x^5 + 120*x^6 - 27*x^7 + 210*x^8 - 48*x^9 + 253*x^10 - 48*x^11 + 210*x^12 - 27*x^13 + 120*x^14 - 8*x^15 + 45*x^16 - x^17 + 10*x^18 + x^20).
a(n) = -10*a(n-2) + a(n-3) - 45*a(n-4) + 8*a(n-5) - 120*a(n-6) + 27*a(n-7) - 210*a(n-8) + 48*a(n-9) - 253*a(n-10) + 48*a(n-11) - 210*a(n-12) + 27*a(n-13) - 120*a(n-14) + 8*a(n-15) - 45*a(n-16) + a(n-17) - 10*a(n-18) - a(n-20). - Franck Maminirina Ramaharo, Oct 30 2018
MATHEMATICA
f[x_] = x^10 - x^7 - x^5 - x^3 + 1;
CoefficientList[Series[1/(x^10*f[x + 1/x]), {x, 0, 40}], x]
LinearRecurrence[{0, -10, 1, -45, 8, -120, 27, -210, 48, -253, 48, -210, 27, -120, 8, -45, 1, -10, 0, -1}, {1, 0, -10, 1, 55, -12, -219, 77, 701, -351, -1900, 1277, 4494, -3966, -9485, 11058, 18342, -29012, -34057, 75053}, 40] (* Harvey P. Dale, Dec 20 2023 *)
PROG
(PARI) x='x+O('x^50); Vec(1/(1+10*x^2-x^3+45*x^4-8*x^5+120*x^6-27*x^7 + 210*x^8-48*x^9+253*x^10-48*x^11+210*x^12-27*x^13+120*x^14 - 8*x^15 + 45*x^16-x^17+10*x^18+x^20)) \\ G. C. Greubel, Nov 03 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 + 10*x^2-x^3+45*x^4-8*x^5+120*x^6-27*x^7+210*x^8-48*x^9+253*x^10 - 48*x^11+210*x^12-27*x^13+120*x^14-8*x^15+45*x^16-x^17+10*x^18+x^20))); // G. C. Greubel, Nov 03 2018
CROSSREFS
KEYWORD
easy,sign
AUTHOR
EXTENSIONS
Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 30 2018
STATUS
approved