The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A167603 Expansion of 1/(1 + 837*x + 277760*x^2 + 83891456*x^3 + 7809531904*x^4). 3
 1, -837, 422809, -205297469, 116802170481, -69673476119413, 39794491851872649, -22150911964734611693, 12419834337117692910305, -7037064660459418136012197, 3987785838055462331085793401, -2252091398491521818356890138525, 1270709613993089447039294803101777 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ratio limit is 496*-1.1388396294897187...; the beta integer like rational pseudo-Pisot root. This beta integer root is smaller than the lowest Salem number. LINKS G. C. Greubel, Table of n, a(n) for n = 0..100 Index entries for linear recurrences with constant coefficients, signature (-837, -277760, -83891456, -7809531904). FORMULA a(n+4) + 837*a(n+3) + 277760*a(n+2) + 83891456*a(n+1) + 7809531904*a(n) = 0. - G. C. Greubel, Jun 17 2016 MATHEMATICA LinearRecurrence[{-837, -277760, -83891456, -7809531904}, {1, -837, 422809, -205297469}, 50] (* G. C. Greubel, Jun 17 2016 *) PROG (PARI) x='x+O('x^50); Vec(1/(1 + 837*x + 277760*x^2 + 83891456*x^3 + 7809531904*x^4)) \\ G. C. Greubel, Nov 03 2018 (MAGMA) m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 + 837*x + 277760*x^2 + 83891456*x^3 + 7809531904*x^4))); // G. C. Greubel, Nov 03 2018 CROSSREFS Cf. A143471, A143478. Sequence in context: A322524 A016113 A177846 * A284187 A202716 A118380 Adjacent sequences:  A167600 A167601 A167602 * A167604 A167605 A167606 KEYWORD sign,easy AUTHOR Roger L. Bagula, Nov 06 2009 EXTENSIONS New name by Franck Maminirina Ramaharo, Nov 02 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 19:51 EST 2022. Contains 350455 sequences. (Running on oeis4.)