login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A167603 Expansion of 1/(1 + 837*x + 277760*x^2 + 83891456*x^3 + 7809531904*x^4). 3
1, -837, 422809, -205297469, 116802170481, -69673476119413, 39794491851872649, -22150911964734611693, 12419834337117692910305, -7037064660459418136012197, 3987785838055462331085793401, -2252091398491521818356890138525, 1270709613993089447039294803101777 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ratio limit is 496*-1.1388396294897187...;

the beta integer like rational pseudo-Pisot root.

This beta integer root is smaller than the lowest Salem number.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..100

Index entries for linear recurrences with constant coefficients, signature (-837, -277760, -83891456, -7809531904).

FORMULA

a(n+4) + 837*a(n+3) + 277760*a(n+2) + 83891456*a(n+1) + 7809531904*a(n) = 0. - G. C. Greubel, Jun 17 2016

MATHEMATICA

LinearRecurrence[{-837, -277760, -83891456, -7809531904}, {1, -837, 422809, -205297469}, 50] (* G. C. Greubel, Jun 17 2016 *)

PROG

(PARI) x='x+O('x^50); Vec(1/(1 + 837*x + 277760*x^2 + 83891456*x^3 + 7809531904*x^4)) \\ G. C. Greubel, Nov 03 2018

(MAGMA) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 + 837*x + 277760*x^2 + 83891456*x^3 + 7809531904*x^4))); // G. C. Greubel, Nov 03 2018

CROSSREFS

Cf. A143471, A143478.

Sequence in context: A322524 A016113 A177846 * A284187 A202716 A118380

Adjacent sequences:  A167600 A167601 A167602 * A167604 A167605 A167606

KEYWORD

sign,easy

AUTHOR

Roger L. Bagula, Nov 06 2009

EXTENSIONS

New name by Franck Maminirina Ramaharo, Nov 02 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 14 01:00 EDT 2020. Contains 336473 sequences. (Running on oeis4.)