login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167602
Expansion of 1/(1+14*x+72*x^2+384*x^3+512*x^4).
4
1, -14, 124, -1112, 11504, -121440, 1235392, -12400000, 125394688, -1274938880, 12949806080, -131304445952, 1331250655232, -13503545892864, 136990201856000, -1389579896979456, 14094585311461376
OFFSET
0,2
COMMENTS
The limit of a(n+1)/a(n) tends to 8*(-1.2679237217317025...).
FORMULA
a(n+4) + 14*a(n+3) + 72*a(n+2) + 384*a(n+1) + 512*a(n) = 0. - G. C. Greubel, Jun 17 2016
MATHEMATICA
Clear[p, q, x, t, n];
p[z_]:= 1 + 6 *z + 9 *z^2 + 14* z^3 + 8 *z^4;
q[x_]:= 1/Expand[x^4*p[1/x]];
a = Table[8^(n + 1)*SeriesCoefficient[ Series[q[t], {t, 0, 60}], n], {n, 0, 60}]
LinearRecurrence[{-14, -72, -384, -512}, {1, -14, 124, -1112}, 100] (* G. C. Greubel, Jun 17 2016 *)
PROG
(PARI) Vec(1/(1+14*x+72*x^2+384*x^3+512*x^4)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
Sequence in context: A188411 A125377 A147590 * A212234 A155637 A126535
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Nov 06 2009
EXTENSIONS
Definition rephrased. - R. J. Mathar, Jul 02 2012
STATUS
approved