OFFSET
1,2
COMMENTS
a(n) is the number whose binary representation is A147589(n).
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 1..500
Index entries for linear recurrences with constant coefficients, signature (10,-16).
FORMULA
a(n) = A147537(n)/2.
From R. J. Mathar, Jul 13 2009: (Start)
a(n) = 8^n/4 - 2^(n-1) = A083332(2n-2).
a(n) = 10*a(n-1) - 16*a(n-2).
G.f.: x*(1+4*x)/((1-2*x)*(1-8*x)). (End)
From César Aguilera, Jul 26 2019: (Start)
Lim_{n->infinity} a(n)/a(n-1) = 8;
a(n)/a(n-1) = 8 + 6/A083420(n). (End)
E.g.f.: (1/4)*(exp(2*x)*(-2 + exp(6*x)) + 1). - Stefano Spezia, Aug 05 2019
EXAMPLE
1_10 is 1_2;
14_10 is 1110_2;
124_10 is 1111100_2;
1016_10 is 1111111000_2.
MAPLE
seq(8^n/4-2^(n-1), n=1..25); # Nathaniel Johnston, Apr 30 2011
MATHEMATICA
LinearRecurrence[{10, -16}, {1, 14}, 30] (* Harvey P. Dale, Oct 10 2014 *)
Table[8^n / 4 - 2^(n - 1), {n, 25}] (* Vincenzo Librandi, Jul 27 2019 *)
PROG
(Magma) [8^n/4-2^(n-1): n in [1..25]]; // Vincenzo Librandi, Jul 27 2019
(PARI) vector(25, n, 2^(n-2)*(4^n-2)) \\ G. C. Greubel, Jul 27 2019
(Sage) [2^(n-2)*(4^n-2) for n in (1..25)] # G. C. Greubel, Jul 27 2019
(GAP) List([1..25], n-> 2^(n-2)*(4^n-2)); # G. C. Greubel, Jul 27 2019
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Omar E. Pol, Nov 08 2008
EXTENSIONS
More terms from R. J. Mathar, Jul 13 2009
Typo in a(12) corrected by Omar E. Pol, Jul 20 2009
STATUS
approved