OFFSET
0,2
COMMENTS
a(n)/A083333(n) converges to 3.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 10, 0, -16).
FORMULA
G.f.: (1 + 5*x + 4*x^2 - 16*x^3)/(1 - 10*x^2 + 16*x^4).
From Franck Maminirina Ramaharo, Nov 12 2018: (Start)
a(n) = sqrt(2)^(3*n - 1)*(1 + sqrt(2) + (-1)^n*(sqrt(2) - 1)) + sqrt(2)^(n - 3)*(1 - sqrt(2) - (-1)^n*(sqrt(2) + 1)).
E.g.f.: (sinh(sqrt(2)*x) + 2*sinh(2*sqrt(2)*x))/sqrt(2) - cosh(sqrt(2)*x) + 2*cosh(2*sqrt(2)*x). (End)
MATHEMATICA
CoefficientList[Series[(1+5x+4x^2-16x^3)/(1-10x^2+16x^4), {x, 0, 30}], x]
PROG
(Maxima) (a[0] : 1, a[1] : 5, a[2] : 14, a[3] : 34, a[n] := 10*a[n - 2] - 16*a[n - 4], makelist(a[n], n, 0, 50)); /* Franck Maminirina Ramaharo, Nov 12 2018 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Apr 24 2003
STATUS
approved