login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083332 a(n) = 10*a(n-2) - 16*a(n-4) for n > 3, a(0) = 1, a(1) = 5, a(2) = 14, a(3) = 34. 4
1, 5, 14, 34, 124, 260, 1016, 2056, 8176, 16400, 65504, 131104, 524224, 1048640, 4194176, 8388736, 33554176, 67109120, 268434944, 536871424, 2147482624, 4294968320, 17179867136, 34359740416, 137438949376, 274877911040 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n)/A083333(n) converges to 3.

LINKS

Table of n, a(n) for n=0..25.

Index entries for linear recurrences with constant coefficients, signature (0, 10, 0, -16).

FORMULA

G.f.: (1 + 5*x + 4*x^2 - 16*x^3)/(1 - 10*x^2 + 16*x^4).

a(n) = A016116(n)*A014551(n+1). - R. J. Mathar, Jul 08 2009

From Franck Maminirina Ramaharo, Nov 12 2018: (Start)

a(n) = sqrt(2)^(3*n - 1)*(1 + sqrt(2) + (-1)^n*(sqrt(2) - 1)) + sqrt(2)^(n - 3)*(1 - sqrt(2) - (-1)^n*(sqrt(2) + 1)).

E.g.f.: (sinh(sqrt(2)*x) + 2*sinh(2*sqrt(2)*x))/sqrt(2) - cosh(sqrt(2)*x) + 2*cosh(2*sqrt(2)*x). (End)

MATHEMATICA

CoefficientList[Series[(1+5x+4x^2-16x^3)/(1-10x^2+16x^4), {x, 0, 30}], x]

PROG

(Maxima) (a[0] : 1, a[1] : 5, a[2] : 14, a[3] : 34, a[n] := 10*a[n - 2] - 16*a[n - 4], makelist(a[n], n, 0, 50)); /* Franck Maminirina Ramaharo, Nov 12 2018 */

CROSSREFS

Cf. A147590, A081342 (bisections). [R. J. Mathar, Jul 13 2009]

Cf. A199710. [Bruno Berselli, Nov 11 2011]

Sequence in context: A094584 A023515 A047860 * A101015 A076858 A001215

Adjacent sequences:  A083329 A083330 A083331 * A083333 A083334 A083335

KEYWORD

nonn,easy

AUTHOR

Mario Catalani (mario.catalani(AT)unito.it), Apr 24 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 13:01 EDT 2019. Contains 328222 sequences. (Running on oeis4.)