login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083332
a(n) = 10*a(n-2) - 16*a(n-4) for n > 3, a(0) = 1, a(1) = 5, a(2) = 14, a(3) = 34.
4
1, 5, 14, 34, 124, 260, 1016, 2056, 8176, 16400, 65504, 131104, 524224, 1048640, 4194176, 8388736, 33554176, 67109120, 268434944, 536871424, 2147482624, 4294968320, 17179867136, 34359740416, 137438949376, 274877911040
OFFSET
0,2
COMMENTS
a(n)/A083333(n) converges to 3.
FORMULA
G.f.: (1 + 5*x + 4*x^2 - 16*x^3)/(1 - 10*x^2 + 16*x^4).
a(n) = A016116(n)*A014551(n+1). - R. J. Mathar, Jul 08 2009
From Franck Maminirina Ramaharo, Nov 12 2018: (Start)
a(n) = sqrt(2)^(3*n - 1)*(1 + sqrt(2) + (-1)^n*(sqrt(2) - 1)) + sqrt(2)^(n - 3)*(1 - sqrt(2) - (-1)^n*(sqrt(2) + 1)).
E.g.f.: (sinh(sqrt(2)*x) + 2*sinh(2*sqrt(2)*x))/sqrt(2) - cosh(sqrt(2)*x) + 2*cosh(2*sqrt(2)*x). (End)
MATHEMATICA
CoefficientList[Series[(1+5x+4x^2-16x^3)/(1-10x^2+16x^4), {x, 0, 30}], x]
PROG
(Maxima) (a[0] : 1, a[1] : 5, a[2] : 14, a[3] : 34, a[n] := 10*a[n - 2] - 16*a[n - 4], makelist(a[n], n, 0, 50)); /* Franck Maminirina Ramaharo, Nov 12 2018 */
CROSSREFS
Cf. A147590, A081342 (bisections). [R. J. Mathar, Jul 13 2009]
Cf. A199710. [Bruno Berselli, Nov 11 2011]
Sequence in context: A023515 A047860 A369887 * A101015 A076858 A001215
KEYWORD
nonn,easy
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Apr 24 2003
STATUS
approved