The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A083332 a(n) = 10*a(n-2) - 16*a(n-4) for n > 3, a(0) = 1, a(1) = 5, a(2) = 14, a(3) = 34. 4
 1, 5, 14, 34, 124, 260, 1016, 2056, 8176, 16400, 65504, 131104, 524224, 1048640, 4194176, 8388736, 33554176, 67109120, 268434944, 536871424, 2147482624, 4294968320, 17179867136, 34359740416, 137438949376, 274877911040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n)/A083333(n) converges to 3. LINKS Table of n, a(n) for n=0..25. Index entries for linear recurrences with constant coefficients, signature (0, 10, 0, -16). FORMULA G.f.: (1 + 5*x + 4*x^2 - 16*x^3)/(1 - 10*x^2 + 16*x^4). a(n) = A016116(n)*A014551(n+1). - R. J. Mathar, Jul 08 2009 From Franck Maminirina Ramaharo, Nov 12 2018: (Start) a(n) = sqrt(2)^(3*n - 1)*(1 + sqrt(2) + (-1)^n*(sqrt(2) - 1)) + sqrt(2)^(n - 3)*(1 - sqrt(2) - (-1)^n*(sqrt(2) + 1)). E.g.f.: (sinh(sqrt(2)*x) + 2*sinh(2*sqrt(2)*x))/sqrt(2) - cosh(sqrt(2)*x) + 2*cosh(2*sqrt(2)*x). (End) MATHEMATICA CoefficientList[Series[(1+5x+4x^2-16x^3)/(1-10x^2+16x^4), {x, 0, 30}], x] PROG (Maxima) (a[0] : 1, a[1] : 5, a[2] : 14, a[3] : 34, a[n] := 10*a[n - 2] - 16*a[n - 4], makelist(a[n], n, 0, 50)); /* Franck Maminirina Ramaharo, Nov 12 2018 */ CROSSREFS Cf. A147590, A081342 (bisections). [R. J. Mathar, Jul 13 2009] Cf. A199710. [Bruno Berselli, Nov 11 2011] Sequence in context: A023515 A047860 A369887 * A101015 A076858 A001215 Adjacent sequences: A083329 A083330 A083331 * A083333 A083334 A083335 KEYWORD nonn,easy AUTHOR Mario Catalani (mario.catalani(AT)unito.it), Apr 24 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 15 13:47 EDT 2024. Contains 371689 sequences. (Running on oeis4.)