login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369887
Sum of products of squares of parts , counted without multiplicity, in all partitions of n.
1
1, 1, 5, 14, 34, 95, 208, 537, 1090, 2812, 5566, 12480, 26199, 53486, 112866, 229111, 450800, 885030, 1778190, 3319846, 6624376, 12354288, 23674929, 43485580, 81441398, 149864634, 273431081, 503205344, 906757150, 1630802024, 2920280596, 5166820832
OFFSET
0,3
FORMULA
G.f.: Product_{k>=1} 1 + k^2*x^k/(1-x^k).
EXAMPLE
The partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1. So a(4) = 16 + 9 + 4 + 4 + 1 = 34.
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(prod(k=1, N, 1+k^2*x^k/(1-x^k)))
CROSSREFS
Cf. A077335.
Sequence in context: A094584 A023515 A047860 * A083332 A101015 A076858
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 04 2024
STATUS
approved