login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094584
Dot product of (1,2,...,n) and first n distinct Fibonacci numbers.
6
1, 5, 14, 34, 74, 152, 299, 571, 1066, 1956, 3540, 6336, 11237, 19777, 34582, 60134, 104062, 179320, 307855, 526775, 898706, 1529160, 2595624, 4396224, 7431049, 12537917, 21118814, 35517226, 59646386, 100034456, 167562035, 280348531, 468543802, 782277612
OFFSET
1,2
COMMENTS
a(n) is the cost of all non-leaf nodes in the Fibonacci tree of order n+2. A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node. In a Fibonacci tree the cost of a left (right) edge is defined to be 1 (2). The cost of a node of a Fibonacci tree is defined to be the sum of the costs of the edges that form the path from the root to this node. - Emeric Deutsch, Jun 14 2010
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 14.
D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417. [From Emeric Deutsch, Jun 14 2010]
LINKS
Y. Horibe, An entropy view of Fibonacci trees, Fibonacci Quarterly, 20, No. 2, 1982, 168-178. [From Emeric Deutsch, Jun 14 2010]
FORMULA
a(n) = F(2) + 2*F(3) + 3*F(4) + ... + n*F(n+1) = (n+1)*F(n+3) - F(n+5) + 3.
G.f.: x*(1+2*x)/((1-x)*(1-x-x^2)^2). - Colin Barker, Nov 11 2012
From Wesley Ivan Hurt, Mar 10 2015: (Start)
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) + a(n-5).
a(n) = Sum_{i=1..n+2} (n-i+1) * F(n-i+2).
a(n) = (30*(-1-sqrt(5))^n + (-15+7*sqrt(5))*2^n - (15+7*sqrt(5))*(-3-sqrt(5))^n + 2n*((5-2*sqrt(5))*2^n + (5+2*sqrt(5))*(-3-sqrt(5))^n)) / (10*(-1-sqrt(5))^n). (End)
EXAMPLE
a(4) = (1,2,3,4)*(1,2,3,5) = 1+4+9+20 = 34.
MAPLE
with(combinat): A094584:=n->(n+1)*fibonacci(n+3)-fibonacci(n+5)+3: seq(A094584(n), n=1..50); # Wesley Ivan Hurt, Mar 10 2015
MATHEMATICA
Table[Range[n].Fibonacci[Range[2, n+1]], {n, 40}] (* Harvey P. Dale, Aug 21 2011 *)
PROG
(Magma) I:=[1, 5, 14, 34, 74]; [n le 5 select I[n] else 3*Self(n-1)-Self(n-2)-3*Self(n-3)+Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Mar 11 2015
(Magma) [n*Fibonacci(n+3)-Fibonacci(n+4)+3: n in [1..40]]; // G. C. Greubel, Apr 28 2019
(GAP) List([1..40], n->(n+1)*Fibonacci(n+3)-Fibonacci(n+5)+3); # Muniru A Asiru, Apr 27 2019
(PARI) {a(n) = n*fibonacci(n+3) - fibonacci(n+4) +3}; \\ G. C. Greubel, Apr 28 2019
(Sage) [n*fibonacci(n+3) - fibonacci(n+4) +3 for n in (1..40)] # G. C. Greubel, Apr 28 2019
CROSSREFS
Partial sums of A023607.
Sequence in context: A296010 A182738 A192957 * A023515 A047860 A369887
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 13 2004
STATUS
approved