login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094586
Central numbers of the triangle T of all positive differences of distinct Fibonacci numbers.
2
1, 5, 16, 47, 131, 356, 953, 2529, 6676, 17567, 46135, 121016, 317201, 831053, 2176712, 5700303, 14926171, 39081404, 102323209, 267896585, 701380076, 1836265535, 4807451951, 12586147632, 32951083681, 86267253461, 225850919488
OFFSET
1,2
COMMENTS
As T is also the triangle of sums of consecutive distinct Fibonacci numbers, a(n) is such a sum, namely Sum_{j=n+1..2n} Fibonacci(j).
FORMULA
a(n) = Fibonacci(2n+2) - Fibonacci(n+2) = A094585(2n-1, n).
G.f.: x*(1+x-x^2)/((1-x-x^2)*(1-3*x+x^2)). - Colin Barker, Sep 16 2012
EXAMPLE
a(4) = F(10)-F(6) = 55-8 = 47.
MATHEMATICA
Table[Sum[Fibonacci[n+i], {i, n}], {n, 30}] (* Zerinvary Lajos, Jul 12 2009 *)
With[{F=Fibonacci}, Table[F[2n+2]-F[n+2], {n, 30}]] (* G. C. Greubel, Jul 14 2019 *)
LinearRecurrence[{4, -3, -2, 1}, {1, 5, 16, 47}, 30] (* Harvey P. Dale, Dec 31 2024 *)
PROG
(GAP) List([1..30], n->Fibonacci(2*n+2)-Fibonacci(n+2)); # Muniru A Asiru, Apr 28 2019
(PARI) vector(30, n, f=fibonacci; f(2*n+2)-f(n+2)) \\ G. C. Greubel, Jul 14 2019
(Magma) F:=Fibonacci; [F(2*n+2)-F(n+2): n in [1..30]]; // G. C. Greubel, Jul 14 2019
(Sage) f=fibonacci; [f(2*n+2)-f(n+2) for n in (1..30)] # G. C. Greubel, Jul 14 2019
CROSSREFS
Sequence in context: A086750 A086749 A194541 * A353133 A140336 A197201
KEYWORD
nonn,easy,changed
AUTHOR
Clark Kimberling, May 13 2004
STATUS
approved