The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A369885 Decimal expansion of Sum_{k>=1} log(k+1)/k^2. 0
 1, 8, 0, 0, 7, 5, 5, 0, 5, 6, 0, 0, 5, 2, 8, 2, 9, 9, 1, 4, 9, 6, 6, 0, 6, 0, 1, 4, 2, 1, 4, 8, 4, 3, 1, 8, 1, 4, 4, 5, 6, 6, 3, 7, 8, 3, 8, 1, 8, 4, 1, 7, 9, 3, 0, 2, 7, 1, 8, 6, 6, 7, 5, 9, 1, 7, 2, 9, 9, 8, 8, 3, 1, 7, 6, 3, 8, 6, 3, 1, 1, 8, 0, 5, 1, 5, 9, 2, 9, 8, 4, 3, 7, 8, 8, 9, 2, 4, 3, 8, 1, 0, 9, 8, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Table of n, a(n) for n=1..105. Bernard Candelpergher and Marc-Antoine Coppo, A new class of identities involving Cauchy numbers, harmonic numbers and zeta values, The Ramanujan Journal, Vol. 27 (2012), pp. 305-328; alternative link. István Mező, Problem 11793, Problems and Solutions, The American Mathematical Monthly, Vol. 121, No. 7 (2014), p. 648; A Series with Zetas, Solution to Problem 11793 by FAU Problem Solving Group, ibid., Vol. 123, No. 6 (2016), p. 620. Michael Ian Shamos, A catalog of the real numbers (2011), p. 616. Roberto Tauraso, Problem 11793. Wikipedia, Harmonic number: Harmonic numbers for real and complex values. FORMULA Equals Integral_{x>=1} H(x)/x^2 dx, where H(x) is the harmonic number for real variable x (Shamos, 2011). Equals -zeta'(2) + Sum_{k>=3} (-1)^(k+1)*zeta(k)/(k-2) (Mező, 2014). Equals Sum_{k>=1} lambda(k)*H(k)/(k^2*k!) + 1 + zeta(3) - gamma * zeta(2), where lambda(k) = abs(A006232(k)/A006233(k)) is the n-th non-alternating Cauchy number, H(k) = A001008(k)/A002805(k) is the k-th harmonic number, and gamma is Euler's constant (A001620) (Candelpergher and Coppo, 2012). - Amiram Eldar, Mar 18 2024 EXAMPLE 1.80075505600528299149660601421484318144566378381841... MAPLE evalf(sum((-1)^(k+1)*Zeta(k)/(k-2), k = 3 .. infinity) - Zeta(1, 2), 120) MATHEMATICA RealDigits[NIntegrate[HarmonicNumber[x]/x^2, {x, 1, Infinity}, WorkingPrecision -> 120]][[1]] PROG (PARI) sumpos(k = 1, log(k+1)/k^2) (PARI) sumalt(k = 3, (-1)^(k+1) * zeta(k)/(k-2)) - zeta'(2) CROSSREFS Cf. A001008, A001620, A002805, A006232, A006233, A073002, A210593. Sequence in context: A199064 A280653 A274413 * A167261 A114611 A219241 Adjacent sequences: A369882 A369883 A369884 * A369886 A369887 A369888 KEYWORD nonn,cons AUTHOR Amiram Eldar, Feb 04 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 23:50 EDT 2024. Contains 372782 sequences. (Running on oeis4.)