login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083334
a(n) = 12*a(n-2) - 25*a(n-4).
2
1, 6, 17, 47, 179, 414, 1723, 3793, 16201, 35166, 151337, 327167, 1411019, 3046854, 13148803, 28383073, 122510161, 264425526, 1141401857, 2463529487, 10634068259, 22951715694, 99073772683, 213832351153, 923033565721
OFFSET
0,2
COMMENTS
a(n)/A083335(n) converges to sqrt(11).
FORMULA
G.f.: (1 + 6*x + 5*x^2 - 25*x^3) / (1 - 12*x^2 + 25*x^4).
a(n) = (x^(n+1) + (-1)^(n+1)*(x-2)^(n+1))/2^ceiling(n/2 + 1) where x = 1 + sqrt(11). - Ben Paul Thurston, Aug 30 2006 [edited by Jon E. Schoenfield, Jun 25 2019]
MATHEMATICA
CoefficientList[Series[(1+6x+5x^2-25x^3)/(1-12x^2+25x^4), {x, 0, 10}], x]
LinearRecurrence[{0, 12, 0, -25}, {1, 6, 17, 47}, 30] (* Harvey P. Dale, Oct 15 2012 *)
CROSSREFS
Sequence in context: A026382 A054492 A128525 * A373040 A199113 A297297
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Apr 26 2003
STATUS
approved