login
A083333
a(n) = 10*a(n-2) - 16*a(n-4) for n>=4, with a(0)=a(1)=1, a(2)=6, a(3)=10.
1
1, 1, 6, 10, 44, 84, 344, 680, 2736, 5456, 21856, 43680, 174784, 349504, 1398144, 2796160, 11184896, 22369536, 89478656, 178956800, 715828224, 1431655424, 5726623744, 11453245440, 45812985856, 91625967616, 366503878656
OFFSET
0,3
COMMENTS
A083332(n)/a(n) converges to 3.
FORMULA
G.f.: (1+x-4*x^2)/(1-10*x^2+16*x^4).
a(n) = A016116(n)*A001045(n+1). - R. J. Mathar, Jul 08 2009
MATHEMATICA
CoefficientList[Series[(1+x-4x^2)/(1-10x^2+16x^4), {x, 0, 30}], x]
LinearRecurrence[{0, 10, 0, -16}, {1, 1, 6, 10}, 30] (* Harvey P. Dale, Aug 04 2024 *)
CROSSREFS
Cf. A016131, A082412 (bisections). - R. J. Mathar, Jul 13 2009
Sequence in context: A332441 A153328 A068588 * A032359 A346501 A115917
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Apr 24 2003
STATUS
approved