The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A346501 With p = prime(n), a(n) is the least composite k such that A001414(k) = p and k+p is prime, or 0 if there is no such k. 1
 0, 0, 6, 10, 48, 90, 210, 34, 416, 570, 58, 2652, 930, 1984, 1184, 1376, 2820, 118, 1062, 1830, 3660, 4020, 2190, 2370, 1602, 5340, 9006, 12702, 6208, 3090, 8502, 12198, 3810, 7620, 4448, 298, 21372, 17880, 4710, 15386, 7014, 21376, 22836, 11584, 11946, 394, 16548, 40596, 13926, 454, 7136, 6870 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS All terms are even. Conjecture: a(n) > 0 for n >= 3. LINKS Robert Israel, Table of n, a(n) for n = 1..10000 EXAMPLE a(5) = 48 because A001414(48) = 11 = prime(5) and 48+11 = 59 is prime, and 48 is the least composite that works for this prime. MAPLE spf:= proc(n) local t; add(t[1]*t[2], t=ifactors(n)[2]) end proc: N:= 500: # for a(1)..a(N) count:= 2: V:= Vector(N): for k from 4 by 2 while count < N do if isprime(k) then next fi; p:= spf(k); if isprime(p) then m:= numtheory:-pi(p); if m <= N and V[m] = 0 and isprime(p+k) then V[m]:= k; count:= count+1; fi fi od: convert(V, list); MATHEMATICA sopfr[1] = 0; sopfr[n_] := Plus @@ Times @@@ FactorInteger[n]; seq[max_] := Module[{s = Table[0, {max}], c = 2, k = 3, p, ip}, While[c < max, k++; If[CompositeQ[k] && PrimeQ[(p = sopfr[k])] && PrimeQ[k + p] && (ip = PrimePi[p]) <= max && s[[ip]] == 0, c++; s[[ip]] = k]]; s]; seq[50] (* Amiram Eldar, Jul 22 2021 *) PROG (PARI) sopfr(n) = (n=factor(n))[, 1]~*n[, 2]; \\ A001414 a(n) = if (n<=2, return(0)); my(p=prime(n)); forcomposite(k=2, , if ((sopfr(k)==p) && isprime(k+p), return (k))); \\ Michel Marcus, Jul 22 2021 CROSSREFS Cf. A001414. Sequence in context: A068588 A083333 A032359 * A115917 A275004 A115741 Adjacent sequences: A346498 A346499 A346500 * A346502 A346503 A346504 KEYWORD nonn,look AUTHOR J. M. Bergot and Robert Israel, Jul 20 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 13:22 EDT 2024. Contains 372755 sequences. (Running on oeis4.)