login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147587
a(n) = 14*n + 7.
5
7, 21, 35, 49, 63, 77, 91, 105, 119, 133, 147, 161, 175, 189, 203, 217, 231, 245, 259, 273, 287, 301, 315, 329, 343, 357, 371, 385, 399, 413, 427, 441, 455, 469, 483, 497, 511, 525, 539, 553, 567, 581, 595, 609, 623, 637, 651, 665, 679, 693, 707, 721, 735
OFFSET
0,1
COMMENTS
a(n+3) = 14*n + 49 is the sum of seven consecutive odd numbers starting with 2*n+1. - Wesley Ivan Hurt, Apr 11 2015
Numbers k such that 3^k + 1 is divisible by 547. - Bruno Berselli, Aug 22 2018
Sum of the numbers from 2*(n-1) to 2*(n+2). - Bruno Berselli, Oct 25 2018
FORMULA
a(n) = a(n-1) + 14.
a(n) = A132355(2*n+2) - A132355(2*n+1) = 7*A005408(n).
a(n) = 28*n - a(n-1) for n>0, a(0)=7. - Vincenzo Librandi, Nov 24 2010
From Wesley Ivan Hurt, Apr 11 2015: (Start)
G.f.: 7*(1 + x)/(1 - x)^2.
a(n) = 2*a(n-1) - a(n-2). (End)
Sum_{n>=0} (-1)^n/a(n) = Pi/28 (A132744). - Amiram Eldar, Dec 13 2021
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=0} (1 - (-1)^n/a(n)) = sqrt(2)*sin(3*Pi/14).
Product_{n>=0} (1 + (-1)^n/a(n)) = sqrt(2)*cos(3*Pi/14). (End)
MAPLE
A147587:=n->14*n+7: seq(A147587(n), n=0..100); # Wesley Ivan Hurt, Apr 11 2015
MATHEMATICA
Range[7, 1000, 14] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *)
PROG
(Magma) [14*n+7 : n in [0..100]]; // Wesley Ivan Hurt, Apr 11 2015
(PARI) a(n)=14*n+7 \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 08 2008
EXTENSIONS
More terms from Vincenzo Librandi, Oct 23 2009
STATUS
approved