login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132355
Numbers of the form 9*h^2 + 2*h, for h an integer.
14
0, 7, 11, 32, 40, 75, 87, 136, 152, 215, 235, 312, 336, 427, 455, 560, 592, 711, 747, 880, 920, 1067, 1111, 1272, 1320, 1495, 1547, 1736, 1792, 1995, 2055, 2272, 2336, 2567, 2635, 2880, 2952, 3211, 3287, 3560, 3640, 3927, 4011, 4312, 4400, 4715, 4807
OFFSET
1,2
COMMENTS
X values of solutions to the equation 9*X^3 + X^2 = Y^2.
The set of all m such that 9*m + 1 is a perfect square. - Gary Detlefs, Feb 22 2010
The concatenation of any term with 11..11 (1 repeated an even number of times, see A099814) belongs to the list. Example: 87 is a term, so also 8711, 871111, 87111111, 871111111111, ... are terms of this sequence. - Bruno Berselli, May 15 2017
LINKS
S. Cooper and M. D. Hirschhorn, Results of Hurwitz type for three squares. Discrete Math., Vol. 274, No. 1-3 (2004), pp. 9-24. See A(q).
FORMULA
a(2*k) = k*(9*k-2), a(2*k+1) = k*(9*k+2).
a(n) = n^2 - n + 5*floor(n/2)^2. - Gary Detlefs, Feb 23 2010
From R. J. Mathar, Mar 17 2010: (Start)
a(n) = +a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).
G.f.: x^2*(7 + 4*x + 7*x^2)/((1 + x)^2*(1 - x)^3). (End)
a(n) = (2*n - 1 + (-1)^n)*(9*(2*n - 1) + (-1)^n)/16. - Luce ETIENNE, Sep 13 2014
Sum_{n>=2} 1/a(n) = 9/4 - cot(2*Pi/9)*Pi/2. - Amiram Eldar, Mar 15 2022
MAPLE
readlib(issqr); for n from 0 to 3560 do if(issqr(9*n+1)) then print(n) fi od; # Gary Detlefs, Feb 22 2010
seq(n^2+n+5*ceil(n/2)^2, n=0..39); # Gary Detlefs, Feb 23 2010
MATHEMATICA
f[n_]:=IntegerQ[Sqrt[1+9*n]]; Select[Range[0, 8! ], f[ # ]&] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
Sort[Table[9n^2+2n, {n, -30, 30}]] (* Harvey P. Dale, Dec 06 2013 *)
PROG
(Magma) a:=func<n | 9*n^2+2*n>; [0] cat [a(n*m): m in [-1, 1], n in [1..25]]; // Jason Kimberley, Nov 08 2012
(PARI) a(n)=n^2-n+5*(n\2)^2 \\ Charles R Greathouse IV, Sep 28 2015
CROSSREFS
A205808 is the characteristic function.
Numbers of the form 9*n^2+k*n, for integer n: A016766 (k=0), this sequence (k=2), A185039 (k=4), A057780 (k=6), A218864 (k=8). - Jason Kimberley, Nov 09 2012
For similar sequences of numbers m such that 9*m+k is a square, see list in A266956.
Sequence in context: A053711 A043110 A043890 * A241573 A215442 A019416
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, Nov 08 2007
EXTENSIONS
Simpler definition and minor edits from N. J. A. Sloane, Feb 03 2012
Since this is a list, offset changed to 1 and formulas translated by Jason Kimberley, Nov 18 2012
STATUS
approved