login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185039
Numbers of the form 9*m^2 + 4*m, m an integer.
9
0, 5, 13, 28, 44, 69, 93, 128, 160, 205, 245, 300, 348, 413, 469, 544, 608, 693, 765, 860, 940, 1045, 1133, 1248, 1344, 1469, 1573, 1708, 1820, 1965, 2085, 2240, 2368, 2533, 2669, 2844, 2988, 3173, 3325, 3520, 3680, 3885, 4053, 4268, 4444, 4669, 4853, 5088
OFFSET
1,2
COMMENTS
Also, numbers m such that 9*m+4 is a square. After 0, therefore, there are no squares in this sequence. - Bruno Berselli, Jan 07 2016
LINKS
S. Cooper and M. D. Hirschhorn, Results of Hurwitz type for three squares. Discrete Math. 274 (2004), no. 1-3, 9-24. See B(q).
FORMULA
From Bruno Berselli, Feb 04 2012: (Start)
G.f.: x*(5+8*x+5*x^2)/((x+1)^2*(1-x)^3).
a(n) = a(-n+1) = (18*n*(n-1)+(2*n-1)*(-1)^n+1)/8 = A004526(n)*A156638(n). (End).
MATHEMATICA
CoefficientList[Series[x*(5+8*x+5*x^2)/((x+1)^2*(1-x)^3), {x, 0, 50}], x] (* G. C. Greubel, Jun 20 2017 *)
LinearRecurrence[{1, 2, -2, -1, 1}, {0, 5, 13, 28, 44}, 50] (* Harvey P. Dale, Jan 23 2018 *)
PROG
(Magma) [0] cat &cat[[9*n^2-4*n, 9*n^2+4*n]: n in [1..32]]; // Bruno Berselli, Feb 04 2011
(PARI) x='x+O('x^50); Vec(x*(5+8*x+5*x^2)/((x+1)^2*(1-x)^3)) \\ G. C. Greubel, Jun 20 2017
CROSSREFS
Characteristic function is A205809.
Numbers of the form 9*n^2+k*n, for integer n: A016766 (k=0), A132355 (k=2), this sequence (k=4), A057780 (k=6), A218864 (k=8). [Jason Kimberley, Nov 08 2012]
For similar sequences of numbers m such that 9*m+k is a square, see list in A266956.
Sequence in context: A296775 A272045 A248860 * A344521 A316537 A175254
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 04 2012
STATUS
approved