login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156638 Numbers k such that k^2 + 2 == 0 (mod 9). 8
4, 5, 13, 14, 22, 23, 31, 32, 40, 41, 49, 50, 58, 59, 67, 68, 76, 77, 85, 86, 94, 95, 103, 104, 112, 113, 121, 122, 130, 131, 139, 140, 148, 149, 157, 158, 166, 167, 175, 176, 184, 185, 193, 194, 202, 203, 211, 212, 220, 221, 229, 230, 238, 239, 247, 248, 256 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
From Artur Jasinski, Apr 30 2010: (Start)
Numbers congruent to 4 or 5 mod 9.
Numbers which are not the sum of 3 cubes.
Complement to A060464. (End)
Numbers k such that A010888(k^2) = 7. - V.J. Pohjola, Aug 18 2012
REFERENCES
Henri Cohen, Number Theory Volume I: Tools and Diophantine Equations. Springer Verlag (2007) p. 380. - Artur Jasinski, Apr 30 2010
LINKS
Andrew Sutherland, Sums of three cubes, Slides of a talk given May 07 2020 on the Number Theory Web.
FORMULA
For n > 2, a(n) = a(n-2) + 9.
G.f.: x*(4*x^2 + x + 4)/(x^3 - x^2 - x + 1). - Alexander R. Povolotsky, Feb 15 2009
From R. J. Mathar, Feb 19 2009: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3), n>3.
a(n) = 9*n/2 - 9/4 - 7*(-1)^n/4.
G.f.: x*(4 + x + 4*x^2)/((1 + x)*(1 - x)^2). (End)
a(n) = -a(-n+1). - Bruno Berselli, Jan 08 2012
E.g.f.: 4 + ((18*x - 9)*exp(x) - 7*exp(-x))/4. - David Lovler, Aug 21 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(Pi/18)*Pi/9. - Amiram Eldar, Sep 26 2022
MAPLE
A156638:=n->9*n/2 - 9/4 - 7*(-1)^n/4: seq(A156638(n), n=1..80); # Wesley Ivan Hurt, Aug 16 2015
MATHEMATICA
LinearRecurrence[{1, 1, -1}, {4, 5, 13}, 50] (* Vincenzo Librandi, Mar 01 2012 *)
Flatten[Table[9n - {5, 4}, {n, 30}]] (* Alonso del Arte, Aug 09 2015 *)
Select[Range[300], PowerMod[#, 2, 9]==7&] (* Harvey P. Dale, Jan 31 2023 *)
PROG
(Magma) [9*n/2 - 9/4 - 7*(-1)^n/4 : n in [1..80]]; // Wesley Ivan Hurt, Aug 16 2015
(PARI) a(n) = (18*n - 9 - 7*(-1)^n)/4 \\ David Lovler, Aug 21 2022
CROSSREFS
Sequence in context: A283483 A288755 A227897 * A098868 A087882 A338544
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 12 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 08:12 EST 2023. Contains 367515 sequences. (Running on oeis4.)