login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156636
a(n) = 4394*n + 1820.
4
1820, 6214, 10608, 15002, 19396, 23790, 28184, 32578, 36972, 41366, 45760, 50154, 54548, 58942, 63336, 67730, 72124, 76518, 80912, 85306, 89700, 94094, 98488, 102882, 107276, 111670, 116064, 120458, 124852, 129246, 133640, 138034, 142428, 146822, 151216, 155610
OFFSET
0,1
COMMENTS
The identity (57122*n^2 + 47320*n + 9801)^2 - (169*n^2 + 140*n + 29)*(4394*n + 1820)^2 = 1 can be written as A156735(n)^2 - A156640(n)*a(n)^2 = 1.
FORMULA
G.f.: 26*(70+99*x)/(x-1)^2. - R. J. Mathar, Jan 05 2011
a(n) = 2*a(n-1) - a(n-2).
E.g.f.: 26*exp(x)*(70 + 169*x). - Elmo R. Oliveira, Dec 08 2024
MATHEMATICA
LinearRecurrence[{2, -1}, {1820, 6214}, 50]
PROG
(Magma) I:=[1820, 6214]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]];
(PARI) a(n)=4394*n+1820 \\ Charles R Greathouse IV, Dec 23 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 15 2009
EXTENSIONS
Offset corrected by R. J. Mathar, Jan 05 2011
STATUS
approved