OFFSET
0,1
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) for n>2.
G.f.: (9801 + 84840*x + 19603*x^2)/(1 - x)^3. - Vincenzo Librandi, May 03 2014
E.g.f.: (9801 +104442*x +57122*x^2)*exp(x). - G. C. Greubel, Feb 28 2021
MAPLE
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {9801, 114243, 332929}, 50]
CoefficientList[Series[(9801 +84840x +19603x^2)/(1-x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, May 03 2014 *)
Table[57122n^2+47320n+9801, {n, 0, 30}] (* Harvey P. Dale, Jan 30 2024 *)
PROG
(Magma) I:=[9801, 114243, 332929]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n)= 57122*n^2+47320*n+9801 \\ Charles R Greathouse IV, Dec 23 2011
(Sage) [57122*n^2 + 47320*n + 9801 for n in (0..50)] # G. C. Greubel, Feb 28 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 15 2009
EXTENSIONS
Edited by Charles R Greathouse IV, Jul 25 2010
STATUS
approved