login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156735
a(n) = 57122*n^2 + 47320*n + 9801.
3
9801, 114243, 332929, 665859, 1113033, 1674451, 2350113, 3140019, 4044169, 5062563, 6195201, 7442083, 8803209, 10278579, 11868193, 13572051, 15390153, 17322499, 19369089, 21529923, 23805001, 26194323, 28697889, 31315699
OFFSET
0,1
COMMENTS
The identity (57122*n^2 +47320*n +9801)^2 - (169*n^2 +140*n +29)*(4394*n +1820)^2 = 1 can be written as a(n)^2 - A156640(n)*A156636(n)^2 = 1.
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) for n>2.
G.f.: (9801 + 84840*x + 19603*x^2)/(1 - x)^3. - Vincenzo Librandi, May 03 2014
E.g.f.: (9801 +104442*x +57122*x^2)*exp(x). - G. C. Greubel, Feb 28 2021
MAPLE
A156735:= n-> 57122*n^2 + 47320*n + 9801; seq(A156735(n), n=0..50); # G. C. Greubel, Feb 28 2021
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {9801, 114243, 332929}, 50]
CoefficientList[Series[(9801 +84840x +19603x^2)/(1-x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, May 03 2014 *)
Table[57122n^2+47320n+9801, {n, 0, 30}] (* Harvey P. Dale, Jan 30 2024 *)
PROG
(Magma) I:=[9801, 114243, 332929]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n)= 57122*n^2+47320*n+9801 \\ Charles R Greathouse IV, Dec 23 2011
(Sage) [57122*n^2 + 47320*n + 9801 for n in (0..50)] # G. C. Greubel, Feb 28 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 15 2009
EXTENSIONS
Edited by Charles R Greathouse IV, Jul 25 2010
STATUS
approved