login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296775
Expansion of 1/Sum_{k>=0} A000326(k+1)*x^k.
1
1, -5, 13, -27, 54, -108, 216, -432, 864, -1728, 3456, -6912, 13824, -27648, 55296, -110592, 221184, -442368, 884736, -1769472, 3538944, -7077888, 14155776, -28311552, 56623104, -113246208, 226492416, -452984832, 905969664, -1811939328, 3623878656
OFFSET
0,2
FORMULA
a(n) = -2*a(n-1) for n > 3.
For n >= 3, a(n) = (-1)^n * 27 * 2^(n-3). - Vaclav Kotesovec, Dec 20 2017
G.f.: (1-x)^3/(1+2*x). - Robert Israel, Dec 20 2017
E.g.f.: (1/8)*(- 19 + 14*x - 2*x^2 + 27*exp(-2*x) ). - Alejandro J. Becerra Jr., Feb 16 2021
MAPLE
1, -5, 13, seq(-27*(-2)^i, i=0..50); # Robert Israel, Dec 20 2017
MATHEMATICA
CoefficientList[Series[1/Sum[(k+1)*(3*k+2)*x^k/2, {k, 0, 30}], {x, 0, 30}], x] (* Vaclav Kotesovec, Dec 20 2017 *)
Join[{1, -5, 13}, Table[(-1)^n * 27 * 2^(n-3), {n, 3, 30}]] (* Vaclav Kotesovec, Dec 20 2017 *)
PROG
(PARI) N=66; my(x='x+O('x^N)); Vec(1/sum(k=0, N, (k+1)*(3*k+2)/2*x^k))
(PARI) first(n) = Vec((1-x)^3/(1+2*x) + O(x^n)) \\ Iain Fox, Dec 20 2017
(Magma) [1, -5, 13] cat [-27*(-2)^(n-3): n in [3..50]]; // G. C. Greubel, Jan 04 2023
(SageMath) [1, -5, 13]+[-27*(-2)^(n-3) for n in range(3, 51)] # G. C. Greubel, Jan 04 2023
CROSSREFS
Sequence in context: A079989 A062480 A027024 * A272045 A248860 A185039
KEYWORD
sign
AUTHOR
Seiichi Manyama, Dec 20 2017
STATUS
approved