login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027024
a(n) = T(n,n+2), T given by A027023.
4
1, 5, 13, 27, 53, 101, 189, 351, 649, 1197, 2205, 4059, 7469, 13741, 25277, 46495, 85521, 157301, 289325, 532155, 978789, 1800277, 3311229, 6090303, 11201817, 20603357, 37895485, 69700667, 128199517, 235795677, 433695869
OFFSET
2,2
FORMULA
G.f.: x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)).
a(n) = a(n-1) + a(n-2) + a(n-3) + 8, for n>4. - Greg Dresden, Feb 09 2020
a(n) = A000213(n+2)-4. - R. J. Mathar, Jun 24 2020
MAPLE
seq(coeff(series(x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)), x, n+1), x, n), n = 2..35); # G. C. Greubel, Nov 04 2019
MATHEMATICA
Drop[CoefficientList[Series[x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)), {x, 0, 35}], x], 2] (* or *) LinearRecurrence[{2, 0, 0, -1}, {1, 5, 13, 27}, 35] (* G. C. Greubel, Nov 04 2019 *)
PROG
(PARI) my(x='x+O('x^35)); Vec(x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3))) \\ G. C. Greubel, Nov 04 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 35); Coefficients(R!( x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)) )); // G. C. Greubel, Nov 04 2019
(Sage)
def A027024_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x^2*(1+x)^3/((1-x)*(1-x-x^2-x^3)) ).list()
a=A027024_list(35); a[2:] # G. C. Greubel, Nov 04 2019
(GAP) a:=[1, 5, 13, 27];; for n in [5..35] do a[n]:=2*a[n-1]-a[n-4]; od; a; # G. C. Greubel, Nov 04 2019
CROSSREFS
Pairwise sums of A027053.
Sequence in context: A023541 A079989 A062480 * A296775 A272045 A248860
KEYWORD
nonn,easy
STATUS
approved