login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132357
a(n) = 3*a(n-1) - a(n-3) + 3*a(n-4).
4
1, 4, 14, 41, 122, 364, 1093, 3280, 9842, 29525, 88574, 265720, 797161, 2391484, 7174454, 21523361, 64570082, 193710244, 581130733, 1743392200, 5230176602, 15690529805, 47071589414, 141214768240, 423644304721
OFFSET
0,2
FORMULA
O.g.f.: -(1+x+2*x^2)/((3*x-1)*(x+1)*(x^2-x+1)) = -(3/2)/(3*x-1)+(1/3)*(x-2)/(x^2-x+1)+(1/ 6)/(x+1). - R. J. Mathar, Nov 28 2007
a(n) = (1/2)*3^(n+1) + (1/6)*(-1)^n - (2/3)*cos(Pi*n/3). Or, a(n) = (1/2)*3^(n+1) + (1/2)*[ -1; -1; 1; 1; 1; -1]. - Richard Choulet, Jan 02 2008
a(n+1) - 3a(n) = A132367(n+1). - Paul Curtz, Dec 02 2007
6*a(n) = (-1)^n +3^(n+2) -2*A057079(n+1). - R. J. Mathar, Oct 03 2021
MATHEMATICA
LinearRecurrence[{3, 0, -1, 3}, {1, 4, 14, 41}, 50] (* Paolo Xausa, Dec 05 2023 *)
PROG
(PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; 3, -1, 0, 3]^n*[1; 4; 14; 41])[1, 1] \\ Charles R Greathouse IV, Oct 08 2016
CROSSREFS
First differences of A132353.
Cf. A129339.
Sequence in context: A375406 A358587 A237853 * A262875 A219867 A295201
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 24 2007
STATUS
approved