The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A132367 Period 6: repeat [1, 1, 2, -1, -1, -2]. 5
 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Nonsimple continued fraction expansion of 1+1/sqrt(3) = 1 + A020760. - R. J. Mathar, Mar 08 2012 LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,-1). FORMULA a(n) = (1/6)*{-3*(n mod 6)+[(n+1) mod 6]+3*[(n+3) mod 6]-[(n+4) mod 6]}. - Paolo P. Lava, Nov 19 2007 a(n) = cos(Pi*n/3)/3+sqrt(3)*sin(Pi*n/3)+2*(-1)^n/3. - R. J. Mathar, Oct 08 2011 From Wesley Ivan Hurt, Jun 19 2016: (Start) G.f.: (1+x+2*x^2)/(1+x^3). a(n) + a(n-3) = 0 for n>2. (End) MAPLE A132367:=n->[1, 1, 2, -1, -1, -2][(n mod 6)+1]: seq(A132367(n), n=0..100); # Wesley Ivan Hurt, Jun 19 2016 MATHEMATICA PadRight[{}, 120, {1, 1, 2, -1, -1, -2}] (* Harvey P. Dale, Jul 28 2012 *) PROG (PARI) a(n)=[1, 1, 2, -1, -1, -2][n%6+1] \\ Charles R Greathouse IV, Jun 02 2011 (MAGMA) &cat[[1, 1, 2, -1, -1, -2]^^20]; // Wesley Ivan Hurt, Jun 19 2016 CROSSREFS Cf. A020760, A061347, A100051, A100063, A122876. Sequence in context: A132419 A131556 A107751 * A087204 A101825 A177702 Adjacent sequences:  A132364 A132365 A132366 * A132368 A132369 A132370 KEYWORD sign,easy,less AUTHOR Paul Curtz, Nov 09 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 4 01:05 EDT 2020. Contains 334808 sequences. (Running on oeis4.)