login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219867
Number of tilings of a 3 X n rectangle using dominoes and straight (3 X 1) trominoes.
7
1, 1, 4, 14, 41, 143, 472, 1562, 5233, 17395, 58002, 193346, 644219, 2147421, 7156704, 23852324, 79497767, 264952955, 883057354, 2943113598, 9809007073, 32692164351, 108958689984, 363145140266, 1210315480391, 4033823637937, 13444208923518, 44807796457932
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,5,12,-3,-11,-30,-5,-13,24,14,24,-3,3,-10,-5,-4,-1,-1).
FORMULA
G.f.: see Maple program.
EXAMPLE
a(2) = 4, because there are 4 tilings of a 3 X 2 rectangle using dominoes and straight (3 X 1) trominoes:
.___. .___. .___. .___.
| | | |___| | | | |___|
| | | |___| |_|_| | | |
|_|_| |___| |___| |_|_|
MAPLE
gf:= -(x^15 +x^13 +x^12 +6*x^11 -x^10 +3*x^9 -10*x^8 -4*x^7 -9*x^6 +2*x^5 +2*x^4 +7*x^3 +2*x^2 -1) / (x^18 +x^17 +4*x^16 +5*x^15 +10*x^14 -3*x^13 +3*x^12 -24*x^11 -14*x^10 -24*x^9 +13*x^8 +5*x^7 +30*x^6 +11*x^5 +3*x^4 -12*x^3 -5*x^2 -x +1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..30);
CROSSREFS
Column k=3 of A219866.
Sequence in context: A237853 A132357 A262875 * A295201 A309296 A124616
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Nov 30 2012
STATUS
approved