|
|
A045849
|
|
Number of nonnegative solutions of x1^2 + x2^2 + ... + x7^2 = n.
|
|
6
|
|
|
1, 7, 21, 35, 42, 63, 112, 141, 126, 154, 259, 315, 280, 308, 462, 567, 497, 462, 693, 910, 798, 749, 1078, 1281, 1092, 1043, 1407, 1715, 1576, 1449, 1946, 2422, 2016, 1687, 2429, 3045, 2604, 2345, 3066
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
Coefficient of q^n in (1 + q + q^4 + q^9 + q^16 + q^25 + q^36 + q^49 + q^64 + ...)^7.
G.f.: (1 + theta_3(q))^7/128, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 08 2018
|
|
MATHEMATICA
|
(1 + EllipticTheta[3, 0, q])^7/128 + O[q]^50 // CoefficientList[#, q]& (* Jean-François Alcover, Aug 26 2019 *)
|
|
PROG
|
(PARI) seq(n)=Vec((sum(k=0, sqrtint(n), x^(k^2)) + O(x*x^n))^7) \\ Andrew Howroyd, Aug 08 2018
(Ruby)
def mul(f_ary, b_ary, m)
s1, s2 = f_ary.size, b_ary.size
ary = Array.new(s1 + s2 - 1, 0)
(0..s1 - 1).each{|i|
(0..s2 - 1).each{|j|
ary[i + j] += f_ary[i] * b_ary[j]
}
}
ary[0..m]
end
def power(ary, n, m)
if n == 0
a = Array.new(m + 1, 0)
a[0] = 1
return a
end
k = power(ary, n >> 1, m)
k = mul(k, k, m)
return k if n & 1 == 0
return mul(k, ary, m)
end
def A(k, n)
ary = Array.new(n + 1, 0)
(0..Math.sqrt(n).to_i).each{|i| ary[i * i] = 1}
power(ary, k, n)
end
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|