OFFSET
0,2
COMMENTS
Number of ways to write n as an ordered sum of 7 octahedral numbers (A005900).
Pollock (1850) conjectured that every number is the sum of at most 7 octahedral numbers (a(n) > 0 for all n >= 0).
LINKS
Ilya Gutkovskiy, Extended graphical example
Eric Weisstein's World of Mathematics, Octahedral Number
FORMULA
G.f.: (Sum_{k>=0} x^(k*(2*k^2+1)/3))^7.
EXAMPLE
a(6) = 14 because we have:
[6, 0, 0, 0, 0, 0, 0]
[0, 6, 0, 0, 0, 0, 0]
[0, 0, 6, 0, 0, 0, 0]
[0, 0, 0, 6, 0, 0, 0]
[0, 0, 0, 0, 6, 0, 0]
[0, 0, 0, 0, 0, 6, 0]
[0, 0, 0, 0, 0, 0, 6]
[1, 1, 1, 1, 1, 1, 0]
[1, 1, 1, 1, 1, 0, 1]
[1, 1, 1, 1, 0, 1, 1]
[1, 1, 1, 0, 1, 1, 1]
[1, 1, 0, 1, 1, 1, 1]
[1, 0, 1, 1, 1, 1, 1]
[0, 1, 1, 1, 1, 1, 1]
MATHEMATICA
nmax = 68; CoefficientList[Series[Sum[x^(k (2 k^2 + 1)/3), {k, 0, nmax}]^7, {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 12 2017
STATUS
approved