login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282172 Expansion of (Sum_{k>=0} x^(k*(k+1)*(k+2)/6))^5. 5
1, 5, 10, 10, 10, 21, 30, 20, 15, 30, 35, 30, 40, 40, 35, 60, 65, 25, 30, 60, 46, 50, 80, 50, 55, 120, 95, 20, 60, 90, 60, 80, 100, 40, 80, 145, 85, 30, 90, 85, 105, 155, 100, 40, 155, 170, 90, 80, 100, 90, 171, 145, 40, 60, 140, 110, 125, 130, 80, 140, 250, 170, 70, 110, 140, 160, 190, 140, 90, 180, 220, 170, 95, 70, 110, 215 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of ways to write n as an ordered sum of 5 tetrahedral (or triangular pyramidal) numbers (A000292).

a(n) > 0 for all n ("Pollock's Conjecture").

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000

Ilya Gutkovskiy, Extended graphical example

Eric Weisstein's World of Mathematics, Pollock's Conjecture

Eric Weisstein's World of Mathematics, Tetrahedral Number

Index to sequences related to pyramidal numbers

FORMULA

G.f.: (Sum_{k>=0} x^(k*(k+1)*(k+2)/6))^5.

EXAMPLE

a(4) = 10 because we have:

[4, 0, 0, 0, 0]

[0, 4, 0, 0, 0]

[0, 0, 4, 0, 0]

[0, 0, 0, 4, 0]

[0, 0, 0, 0, 4]

[1, 1, 1, 1, 0]

[1, 1, 1, 0, 1]

[1, 1, 0, 1, 1]

[1, 0, 1, 1, 1]

[0, 1, 1, 1, 1]

MATHEMATICA

nmax = 75; CoefficientList[Series[(Sum[x^(k (k + 1) (k + 2)/6), {k, 0, nmax}])^5, {x, 0, nmax}], x]

CROSSREFS

Cf. A000292, A000797, A008439, A104246.

Sequence in context: A200990 A040020 A222181 * A123337 A038671 A101866

Adjacent sequences:  A282169 A282170 A282171 * A282173 A282174 A282175

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Feb 07 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 22:48 EDT 2018. Contains 316297 sequences. (Running on oeis4.)