This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A282173 Expansion of (Sum_{k>=0} x^(k*(k+1)*(2*k+1)/6))^6. 4
 1, 6, 15, 20, 15, 12, 31, 60, 60, 30, 21, 60, 90, 60, 21, 50, 120, 120, 50, 36, 135, 210, 135, 30, 60, 186, 186, 60, 15, 120, 217, 150, 75, 120, 240, 246, 180, 180, 210, 216, 150, 180, 200, 180, 150, 200, 300, 240, 165, 180, 390, 390, 180, 60, 180, 372, 225, 110, 135, 330, 351, 270, 300, 360, 435, 300, 375, 360, 300, 210 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of ways to write n as an ordered sum of 6 square pyramidal numbers (A000330). Conjecture: a(n) > 0 for all n. Extended conjecture: every number is the sum of at most 6 square pyramidal numbers. Generalized conjecture: every number is the sum of at most k+2 k-gonal pyramidal numbers (except k = 5). - Ilya Gutkovskiy, Feb 10 2017 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 Ilya Gutkovskiy, Extended graphical example Eric Weisstein's World of Mathematics, Square Pyramidal Number FORMULA G.f.: (Sum_{k>=0} x^(k*(k+1)*(2*k+1)/6))^6. EXAMPLE a(5) = 12 because we have: [5, 0, 0, 0, 0, 0] [0, 5, 0, 0, 0, 0] [0, 0, 5, 0, 0, 0] [0, 0, 0, 5, 0, 0] [0, 0, 0, 0, 5, 0] [0, 0, 0, 0, 0, 5] [1, 1, 1, 1, 1, 0] [1, 1, 1, 1, 0, 1] [1, 1, 1, 0, 1, 1] [1, 1, 0, 1, 1, 1] [1, 0, 1, 1, 1, 1] [0, 1, 1, 1, 1, 1] MATHEMATICA nmax = 69; CoefficientList[Series[(Sum[x^(k (k + 1) (2 k + 1)/6), {k, 0, nmax}])^6, {x, 0, nmax}], x] CROSSREFS Cf. A000330, A045848. Sequence in context: A131892 A291381 A280719 * A045848 A294651 A044439 Adjacent sequences:  A282170 A282171 A282172 * A282174 A282175 A282176 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Feb 07 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 21 08:29 EDT 2019. Contains 326162 sequences. (Running on oeis4.)