login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282173 Expansion of (Sum_{k>=0} x^(k*(k+1)*(2*k+1)/6))^6. 4
1, 6, 15, 20, 15, 12, 31, 60, 60, 30, 21, 60, 90, 60, 21, 50, 120, 120, 50, 36, 135, 210, 135, 30, 60, 186, 186, 60, 15, 120, 217, 150, 75, 120, 240, 246, 180, 180, 210, 216, 150, 180, 200, 180, 150, 200, 300, 240, 165, 180, 390, 390, 180, 60, 180, 372, 225, 110, 135, 330, 351, 270, 300, 360, 435, 300, 375, 360, 300, 210 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of ways to write n as an ordered sum of 6 square pyramidal numbers (A000330).

Conjecture: a(n) > 0 for all n.

Extended conjecture: every number is the sum of at most 6 square pyramidal numbers.

Generalized conjecture: every number is the sum of at most k+2 k-gonal pyramidal numbers (except k = 5). - Ilya Gutkovskiy, Feb 10 2017

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000

Ilya Gutkovskiy, Extended graphical example

Eric Weisstein's World of Mathematics, Square Pyramidal Number

Index to sequences related to pyramidal numbers

FORMULA

G.f.: (Sum_{k>=0} x^(k*(k+1)*(2*k+1)/6))^6.

EXAMPLE

a(5) = 12 because we have:

[5, 0, 0, 0, 0, 0]

[0, 5, 0, 0, 0, 0]

[0, 0, 5, 0, 0, 0]

[0, 0, 0, 5, 0, 0]

[0, 0, 0, 0, 5, 0]

[0, 0, 0, 0, 0, 5]

[1, 1, 1, 1, 1, 0]

[1, 1, 1, 1, 0, 1]

[1, 1, 1, 0, 1, 1]

[1, 1, 0, 1, 1, 1]

[1, 0, 1, 1, 1, 1]

[0, 1, 1, 1, 1, 1]

MATHEMATICA

nmax = 69; CoefficientList[Series[(Sum[x^(k (k + 1) (2 k + 1)/6), {k, 0, nmax}])^6, {x, 0, nmax}], x]

CROSSREFS

Cf. A000330, A045848.

Sequence in context: A131892 A291381 A280719 * A045848 A294651 A044439

Adjacent sequences:  A282170 A282171 A282172 * A282174 A282175 A282176

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Feb 07 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 06:02 EDT 2018. Contains 316432 sequences. (Running on oeis4.)