

A282173


Expansion of (Sum_{k>=0} x^(k*(k+1)*(2*k+1)/6))^6.


4



1, 6, 15, 20, 15, 12, 31, 60, 60, 30, 21, 60, 90, 60, 21, 50, 120, 120, 50, 36, 135, 210, 135, 30, 60, 186, 186, 60, 15, 120, 217, 150, 75, 120, 240, 246, 180, 180, 210, 216, 150, 180, 200, 180, 150, 200, 300, 240, 165, 180, 390, 390, 180, 60, 180, 372, 225, 110, 135, 330, 351, 270, 300, 360, 435, 300, 375, 360, 300, 210
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Number of ways to write n as an ordered sum of 6 square pyramidal numbers (A000330).
Conjecture: a(n) > 0 for all n.
Extended conjecture: every number is the sum of at most 6 square pyramidal numbers.
Generalized conjecture: every number is the sum of at most k+2 kgonal pyramidal numbers (except k = 5).  Ilya Gutkovskiy, Feb 10 2017


LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000
Ilya Gutkovskiy, Extended graphical example
Eric Weisstein's World of Mathematics, Square Pyramidal Number
Index to sequences related to pyramidal numbers


FORMULA

G.f.: (Sum_{k>=0} x^(k*(k+1)*(2*k+1)/6))^6.


EXAMPLE

a(5) = 12 because we have:
[5, 0, 0, 0, 0, 0]
[0, 5, 0, 0, 0, 0]
[0, 0, 5, 0, 0, 0]
[0, 0, 0, 5, 0, 0]
[0, 0, 0, 0, 5, 0]
[0, 0, 0, 0, 0, 5]
[1, 1, 1, 1, 1, 0]
[1, 1, 1, 1, 0, 1]
[1, 1, 1, 0, 1, 1]
[1, 1, 0, 1, 1, 1]
[1, 0, 1, 1, 1, 1]
[0, 1, 1, 1, 1, 1]


MATHEMATICA

nmax = 69; CoefficientList[Series[(Sum[x^(k (k + 1) (2 k + 1)/6), {k, 0, nmax}])^6, {x, 0, nmax}], x]


CROSSREFS

Cf. A000330, A045848.
Sequence in context: A131892 A291381 A280719 * A045848 A294651 A044439
Adjacent sequences: A282170 A282171 A282172 * A282174 A282175 A282176


KEYWORD

nonn


AUTHOR

Ilya Gutkovskiy, Feb 07 2017


STATUS

approved



