

A335268


Numbers that are not powers of primes (A024619) whose harmonic mean of their unitary divisors that are larger than 1 is an integer.


3



6, 15, 20, 24, 28, 30, 45, 60, 72, 90, 91, 96, 100, 112, 153, 216, 220, 240, 264, 272, 325, 352, 360, 364, 378, 496, 703, 765, 780, 816, 832, 1056, 1125, 1170, 1225, 1360, 1431, 1512, 1656, 1760, 1891, 1900, 1984, 2275, 2448, 2520, 2701, 2912, 3024, 3168, 3321
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Since the unitary divisors of a power of prime (A000961), p^e, are {1, p^e}, they are trivial terms and hence they are excluded from this sequence.
The corresponding harmonic means are 3, 5, 6, 6, 7, 5, 9, 7, 12, 7, 13, 8, 10, 14, 17, ...
Equivalently, numbers m such that omega(m) > 1 and (usigma(m)m)  m * (2^omega(m)1), or A063919(m)  (m * A309307(m)), where usigma is the sum of unitary divisors (A034448), and 2^omega(m) = A034444(m) is the number of the unitary divisors of m.
The squarefree terms of A335267 are also terms of this sequence.
The terms with 2 distinct prime divisors are of the form p^e * (2*p^e  1), when the second factor is also a prime power. The least term which both of its 2 prime divisors are nonunitary (with multiplicity larger than 1) is 1225 = 5^2 * 7^2 = 5^2 * (2 * 5^2  1).
The unitary perfect numbers (A002827) are terms of this sequence: if m is a unitary perfect number then usigma(m)m = m.


LINKS



EXAMPLE

6 is a term since its unitary divisors other than 1 are 2, 3 and 6, and their harmonic mean, 3/(1/2 + 1/3 + 1/6) = 3, is an integer.


MATHEMATICA

usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); Select[Range[3000], (omega = PrimeNu[#]) > 1 && Divisible[# * (2^omega1), usigma[#]  #] &]


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



