login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309307
Number of unitary divisors of n (excluding 1).
5
0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 3, 1, 1, 3, 1, 3, 3, 3, 1, 3, 1, 3, 1, 3, 1, 7, 1, 1, 3, 3, 3, 3, 1, 3, 3, 3, 1, 7, 1, 3, 3, 3, 1, 3, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 1, 7, 1, 3, 3, 1, 3, 7, 1, 3, 3, 7, 1, 3, 1, 3, 3, 3, 3, 7, 1, 3, 1, 3, 1, 7, 3, 3, 3, 3, 1, 7, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3
OFFSET
1,6
COMMENTS
Also the number of squarefree divisors > 1.
LINKS
Eric Weisstein's World of Mathematics, Unitary Divisor
FORMULA
G.f.: Sum_{k>=2} mu(k)^2*x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)*(zeta(s)/zeta(2*s) - 1).
a(n) = 2^omega(n) - 1.
a(n) = A000225(A001221(n)) = A034444(n) - 1.
Sum_{k=1..n} a(k) ~ 6*n*(log(n) + 2*gamma - 1 - Pi^2/6 - 12*zeta'(2)/Pi^2) / Pi^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 16 2019
a(n) = -1 + Sum_{d|n} mu(d)^2. - Wesley Ivan Hurt, Feb 04 2022
MATHEMATICA
nmax = 100; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x] // Rest
Table[2^PrimeNu[n] - 1, {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 21 2019
STATUS
approved