Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Feb 04 2022 22:55:42
%S 0,1,1,1,1,3,1,1,1,3,1,3,1,3,3,1,1,3,1,3,3,3,1,3,1,3,1,3,1,7,1,1,3,3,
%T 3,3,1,3,3,3,1,7,1,3,3,3,1,3,1,3,3,3,1,3,3,3,3,3,1,7,1,3,3,1,3,7,1,3,
%U 3,7,1,3,1,3,3,3,3,7,1,3,1,3,1,7,3,3,3,3,1,7,3,3,3,3,3,3,1,3,3,3
%N Number of unitary divisors of n (excluding 1).
%C Also the number of squarefree divisors > 1.
%H Amiram Eldar, <a href="/A309307/b309307.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/UnitaryDivisor.html">Unitary Divisor</a>
%F G.f.: Sum_{k>=2} mu(k)^2*x^k/(1 - x^k).
%F Dirichlet g.f.: zeta(s)*(zeta(s)/zeta(2*s) - 1).
%F a(n) = 2^omega(n) - 1.
%F a(n) = A000225(A001221(n)) = A034444(n) - 1.
%F Sum_{k=1..n} a(k) ~ 6*n*(log(n) + 2*gamma - 1 - Pi^2/6 - 12*zeta'(2)/Pi^2) / Pi^2, where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Oct 16 2019
%F a(n) = -1 + Sum_{d|n} mu(d)^2. - _Wesley Ivan Hurt_, Feb 04 2022
%t nmax = 100; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x] // Rest
%t Table[2^PrimeNu[n] - 1, {n, 1, 100}]
%Y Cf. A000225, A001221, A001222, A032741, A034444, A070824, A077610, A087893.
%K nonn
%O 1,6
%A _Ilya Gutkovskiy_, Jul 21 2019