login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A367482
Number of nontrivial divisors of n whose arithmetic derivative is coprime to n.
2
0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 3, 1, 1, 3, 1, 3, 3, 3, 1, 3, 1, 3, 1, 3, 1, 5, 1, 1, 3, 3, 3, 3, 1, 3, 3, 3, 1, 5, 1, 3, 3, 3, 1, 3, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 1, 5, 1, 3, 3, 1, 3, 6, 1, 3, 3, 5, 1, 3, 1, 3, 3, 3, 3, 5, 1, 3, 1, 3, 1, 5, 3, 3, 3, 3, 1, 5, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 1, 6, 1, 3, 5
OFFSET
1,6
LINKS
FORMULA
a(n) = Sum_{d|n, d>1, gcd(n,d')=1} 1.
EXAMPLE
a(66) = 6. The nontrivial divisors of 66 are {2, 3, 6, 11, 22, 33, 66} with derivatives {1, 1, 5, 1, 13, 14, 61}, 6 of which are coprime to n.
MATHEMATICA
f[x_] := f[x] = If[x < 2, 0, x Total[#2/#1 & @@@ FactorInteger[x]]]; {0}~Join~Table[DivisorSum[n, Boole[CoprimeQ[f[#], n]] &], {n, 2, 104}] (* Michael De Vlieger, Nov 24 2023 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A367482(n) = sumdiv(n, d, (d>1)&&(1==gcd(n, A003415(d)))); \\ Antti Karttunen, Jan 13 2025
CROSSREFS
Cf. A003415 (n'), A367483.
Sequence in context: A132468 A353235 A243915 * A367095 A309307 A325446
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Nov 24 2023
EXTENSIONS
More terms from Antti Karttunen, Jan 13 2025
STATUS
approved