login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147586
a(n) = A142710(n)/2.
2
1, 1, 3, 7, 19, 56, 138, 407, 999, 2851, 7113, 19702, 49954, 135461, 347553, 929567, 2403759, 6374236, 16564458, 43697227, 113896339, 299525051, 782121453, 2053027082, 5366641794, 14071792681, 36807232413, 96449857207, 252375716899, 661078086176, 1730190463338, 4531099045727
OFFSET
0,3
FORMULA
From G. C. Greubel, Oct 26 2022: (Start)
a(n) = (1/2)*( (-1)^n*LucasL(n) + LucasL(2*n) - (1 + (-1)^n)*2^(n-1) - [n=0]).
a(n) = 2*a(n-1) + 7*a(n-2) - 12*a(n-3) - 11*a(n-4) + 16*a(n-5) - 4*a(n-6), n >= 7.
G.f.: (1 - x - 6*x^2 + 6*x^3 + 7*x^4 - 2*x^6)/((1 - 4*x^2)*(1 + x - x^2)*(1 - 3*x + x^2)). (End)
MATHEMATICA
LinearRecurrence[{2, 7, -12, -11, 16, -4}, {1, 1, 3, 7, 19, 56, 138}, 51] (* G. C. Greubel, Oct 26 2022 *)
PROG
(Magma) [n eq 0 select 1 else ((-1)^n*Lucas(n) +Lucas(2*n) -(1+(-1)^n)*2^(n-1))/2: n in [0..50]]; // G. C. Greubel, Oct 26 2022
(SageMath)
def A147586(n): return ((-1)^n*lucas_number2(n, 1, -1) + lucas_number2(2*n, 1, -1) - (1 + (-1)^n)*2^(n-1) -int(n==0))/2
[A147586(n) for n in range(51)] # G. C. Greubel, Oct 26 2022
CROSSREFS
Sequence in context: A100702 A367484 A224031 * A305197 A071716 A306088
KEYWORD
nonn
AUTHOR
Paul Curtz, Nov 08 2008
EXTENSIONS
Terms a(11) onward added by G. C. Greubel, Oct 26 2022
STATUS
approved