login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A142710(n)/2.
2

%I #9 Oct 26 2022 03:06:34

%S 1,1,3,7,19,56,138,407,999,2851,7113,19702,49954,135461,347553,929567,

%T 2403759,6374236,16564458,43697227,113896339,299525051,782121453,

%U 2053027082,5366641794,14071792681,36807232413,96449857207,252375716899,661078086176,1730190463338,4531099045727

%N a(n) = A142710(n)/2.

%H G. C. Greubel, <a href="/A147586/b147586.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,7,-12,-11,16,-4).

%F From _G. C. Greubel_, Oct 26 2022: (Start)

%F a(n) = (1/2)*( (-1)^n*LucasL(n) + LucasL(2*n) - (1 + (-1)^n)*2^(n-1) - [n=0]).

%F a(n) = 2*a(n-1) + 7*a(n-2) - 12*a(n-3) - 11*a(n-4) + 16*a(n-5) - 4*a(n-6), n >= 7.

%F G.f.: (1 - x - 6*x^2 + 6*x^3 + 7*x^4 - 2*x^6)/((1 - 4*x^2)*(1 + x - x^2)*(1 - 3*x + x^2)). (End)

%t LinearRecurrence[{2,7,-12,-11,16,-4}, {1,1,3,7,19,56,138}, 51] (* _G. C. Greubel_, Oct 26 2022 *)

%o (Magma) [n eq 0 select 1 else ((-1)^n*Lucas(n) +Lucas(2*n) -(1+(-1)^n)*2^(n-1))/2: n in [0..50]]; // _G. C. Greubel_, Oct 26 2022

%o (SageMath)

%o def A147586(n): return ((-1)^n*lucas_number2(n,1,-1) + lucas_number2(2*n,1,-1) - (1 + (-1)^n)*2^(n-1) -int(n==0))/2

%o [A147586(n) for n in range(51)] # _G. C. Greubel_, Oct 26 2022

%Y Cf. A000032, A142710.

%K nonn

%O 0,3

%A _Paul Curtz_, Nov 08 2008

%E Terms a(11) onward added by _G. C. Greubel_, Oct 26 2022