The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A306088 G.f. A(x) satisfies: Sum_{n>=0} Product_{k=1..n} x^(n+1-k) - A(x)^k = 1. 3
1, -1, 3, -7, 19, -56, 177, -580, 1958, -6775, 23895, -85556, 310120, -1135660, 4194795, -15609180, 58456432, -220153594, 833259832, -3167840154, 12091433140, -46318726124, 178014658219, -686199547440, 2652354809685, -10277881815496, 39919204393686, -155378647638728, 605989451550226, -2367789610092956, 9267691579712271, -36333045662257188, 142655905739812690 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
EXAMPLE
G.f.: A(x) = x - x^2 + 3*x^3 - 7*x^4 + 19*x^5 - 56*x^6 + 177*x^7 - 580*x^8 + 1958*x^9 - 6775*x^10 + 23895*x^11 - 85556*x^12 + 310120*x^13 + ...
such that
1 = 1 + (x - A(x)) + (x - A(x)^2)*(x^2 - A(x)) + (x - A(x)^3)*(x^2 - A(x)^2)*(x^3 - A(x)) + (x - A(x)^4)*(x^2 - A(x)^3)*(x^3 - A(x)^2)*(x^4 - A(x)) + (x - A(x)^5)*(x^2 - A(x)^4)*(x^3 - A(x)^3)*(x^4 - A(x)^2)*(x^5 - A(x)) + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = Vec( sum(m=0, #A, prod(k=1, m, x^(m+1-k) - x^k*Ser(A)^k ) ) )[#A+1]); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A306089.
Sequence in context: A147586 A305197 A071716 * A188625 A258171 A263334
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jun 21 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 17:32 EDT 2024. Contains 373391 sequences. (Running on oeis4.)