login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306089
G.f. A(x) satisfies: Sum_{n>=0} (-1)^n * Product_{k=1..n} x^(n+1-k) + (-A(x))^k = 1.
3
1, 1, 1, 1, 1, 6, 21, 68, 186, 495, 1335, 3744, 10870, 32120, 95565, 284830, 850580, 2548436, 7669604, 23192434, 70443076, 214768128, 656857897, 2014416494, 6192794179, 19081689920, 58923909932, 182331403224, 565289067360, 1755737915942, 5462257817753, 17019938788706, 53109742992332, 165952503650622, 519222849063545, 1626498619326355, 5100995860701418
OFFSET
1,6
LINKS
FORMULA
G.f. A(x) satisfies: A(-A(-x)) = x.
EXAMPLE
G.f.: A(x) = x + x^2 + x^3 + x^4 + x^5 + 6*x^6 + 21*x^7 + 68*x^8 + 186*x^9 + 495*x^10 + 1335*x^11 + 3744*x^12 + 10870*x^13 + 32120*x^14 + 95565*x^15 + ...
such that
1 = 1 - (x - A(x)) + (x + A(x)^2)*(x^2 - A(x)) - (x - A(x)^3)*(x^2 + A(x)^2)*(x^3 - A(x)) + (x + A(x)^4)*(x^2 - A(x)^3)*(x^3 + A(x)^2)*(x^4 - A(x)) - (x - A(x)^5)*(x^2 + A(x)^4)*(x^3 - A(x)^3)*(x^4 + A(x)^2)*(x^5 - A(x)) + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = -Vec( sum(m=0, #A, (-1)^m * prod(k=1, m, x^(m+1-k) + (-x)^k*Ser(A)^k ) ) )[#A+1]); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A134931 A119103 A180795 * A107653 A123653 A375297
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 21 2018
STATUS
approved